Tag Archives: parts bearing

China manufacturer Trailer Parts Use Trailer Axle Suspension Parts Axle Sale American Type Axle 13 Tons Axle for Trailertrailer Axle for Trailer axle bearing

Product Description

Product Specification

Axle Type           L4 Wheer Fixing           Bearing
Max L2   L3   GM Center Studs      L1  Rimis  Axle
Capacity Track Brake Size Center Axle Tube Distance D1 D2 Total Recommended Weight
(T) (mm) (mm) Distance of (mm) of Brake P.C.D. Hole Length to use (kg)
      Spring Seat   Chamber (mm) Diameter (mm)    
      (mm)   (mm)   (mm)      
CK12FB03G1DE 12 1840 ∈420×180 ≥940 150x150x12 440 10-M22x1.5 335 281 2172 7.5V-20 380 (Ouer)33213(lnner)33118
CK13FB03G2DE 13 1840 ∈420×200 ≥940 150x150x12 375 10-M22x1.5 335 281 2170 7.5V-20 381
CK14FB03G2FG 14 1860 ∈420×200 ≥950 150x150x14 380 10-M22x1.5 335 281 2222 8.00V-20 412 (Outer)33215 dnneri32219
CK16FB0GG2HI  16 1860 ∈420×200 ≥950 150x150x16 380 10-M22x1.5 335 281 2293 8.50V-20 439 (Outer)32314(lnner)32222
CK18FBC3GHI 18 1860 ∈420×220 ≥950 150x150x18 380 10-M22x1.5 335 281 2293 8.50V-20 454  (Outer)32314(lnner)32222

Product Display

Related Products

Packaging and Transportation

 

Customer Photo

Our Certificate

Company Profile

FAQ

 

FAQ:

1. Q:What’s your best price for this product?

A: We will quote you best price according to your quantity, so when you making an inquiry, please let us know the quantity you want.The more quantity the better price.

 

2. Q:How about the quality of this product?

A: Our products are certified to ISO9001, TS16949 international quality standards. We compay have very strict Quality Control Systems.

 

3. Q:What material of the product can you supply?

A: Steel 

 

4. Q:What’s your MOQ? 

A: 10pcs for each model. We hope you can buy more to save more money.

 

5. Q:What’s the delivery time?

A: For products that are in stock, we can ship it within 7 days after receiving your payment. For custom order, quantity within 24 tons, production time is 12-20 days after confirmed every details.

 

6. Q:What’s your packing?

A:Our usual packing for this product is pallet, we can also supply you packing according to your requirements.

 

7. Q:Can we custom our own logo or label on this product?

A: Yes, you can. we support logo print & stamping & label print, print will be free if the logo is not very complex.
 

8. Q:What about the warranty?

A: We are very confident in our products, and we pack them very well to make sure the goods in well protection.

 

To avoid any subsequent trouble regarding quality issue, we suggest that you check the springs once you receive them. If there is any transport damaged or quality issue, don’t forget take the detail pictrues and contact us as soon as possible,we will properly handle it, make sure your loss to reduce to the smallest .

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: After Sales Service
Condition: New
Application: Trailer
Certification: CE, ISO
Material: Steel
Type: Front Axles
Customization:
Available

|

Customized Request

axle

What is the role of axles in electric vehicles, and how do they differ from traditional axles?

Electric vehicles (EVs) have unique requirements when it comes to their drivetrain systems, including the axles. The role of axles in EVs is similar to traditional vehicles, but there are some key differences. Here’s a detailed explanation of the role of axles in electric vehicles and how they differ from traditional axles:

Role of Axles in Electric Vehicles:

The primary role of axles in electric vehicles is to transmit torque from the electric motor(s) to the wheels, enabling vehicle propulsion. The axles connect the motor(s) to the wheels and provide support for the weight of the vehicle. Axles are responsible for transferring the rotational force generated by the electric motor(s) to the wheels, allowing the vehicle to move forward or backward.

In electric vehicles, the axles are an integral part of the drivetrain system, which typically includes an electric motor(s), power electronics, and a battery pack. The axles play a crucial role in ensuring efficient power transfer and delivering the desired performance and handling characteristics of the vehicle.

Differences from Traditional Axles:

While the fundamental role of axles in electric vehicles is the same as in traditional vehicles, there are some notable differences due to the unique characteristics of electric propulsion systems:

1. Integration with Electric Motors: In electric vehicles, the axles are often integrated with the electric motors. This means that the motor(s) and axle assembly are combined into a single unit, commonly referred to as an “electric axle” or “e-axle.” This integration helps reduce the overall size and weight of the drivetrain system and simplifies installation in the vehicle.

2. High Torque Requirements: Electric motors generate high amounts of torque from the moment they start, providing instant acceleration. As a result, axles in electric vehicles need to handle higher torque loads compared to traditional axles. They are designed to withstand the torque output of the electric motor(s) and efficiently transmit it to the wheels.

3. Regenerative Braking: Electric vehicles often utilize regenerative braking, which converts the vehicle’s kinetic energy into electrical energy and stores it in the battery. The axles in electric vehicles may incorporate systems or components that enable regenerative braking, such as sensors, controllers, and electric brake actuators.

4. Space Optimization: Electric vehicles often have different packaging requirements compared to traditional internal combustion engine vehicles. The axles in electric vehicles are designed to accommodate the space constraints and specific layout of the vehicle, considering the placement of the battery pack, electric motor(s), and other components.

5. Weight Considerations: Electric vehicles strive to optimize weight distribution to enhance efficiency and handling. Axles in electric vehicles may be designed with lightweight materials or innovative construction techniques to minimize weight while maintaining structural integrity and durability.

It’s important to note that the specific design and characteristics of axles in electric vehicles can vary depending on the vehicle manufacturer, drivetrain configuration (e.g., front-wheel drive, rear-wheel drive, all-wheel drive), and other factors. Automotive manufacturers and suppliers continually innovate and develop new axle technologies to meet the evolving demands of electric vehicle propulsion systems.

axle

What are the symptoms of a failing CV joint, and how does it relate to the axle?

A CV (constant velocity) joint is an essential component of the axle assembly in many vehicles. When a CV joint starts to fail, it can exhibit several symptoms that indicate potential problems. Here’s a detailed explanation of the symptoms of a failing CV joint and its relationship to the axle:

Symptoms of a Failing CV Joint:

1. Clicking or popping sounds: One of the most common signs of a failing CV joint is a clicking or popping sound when making turns. This noise usually occurs during tight turns and may indicate worn-out or damaged CV joint bearings.

2. Grease leakage: A failing CV joint may leak grease, which can be seen as dark-colored grease splattered around the CV joint or on the inside of the wheel. Grease leakage is typically caused by a cracked or damaged CV joint boot, which allows the lubricating grease to escape and contaminants to enter.

3. Excessive vibration: A worn-out CV joint can cause vibrations, especially during acceleration. The vibrations may be felt in the steering wheel, floorboards, or even the entire vehicle. These vibrations can become more noticeable as the CV joint deteriorates further.

4. Difficulty in turning: As the CV joint wears out, it may become difficult to turn the vehicle, especially at low speeds or when making sharp turns. This symptom is often accompanied by a clicking or popping sound.

5. Uneven tire wear: A failing CV joint can lead to uneven tire wear. If the CV joint is damaged or worn, it can cause the axle to wobble or vibrate, resulting in uneven tire tread wear. This can be observed by visually inspecting the tires and noticing uneven patterns of wear.

Relationship to the Axle:

The CV joint is an integral part of the axle assembly. It connects the transmission to the wheels and allows smooth power delivery to the wheels while accommodating the up-and-down motion of the suspension. The axle shaft is responsible for transmitting torque from the transmission to the CV joints and ultimately to the wheels.

Axles contain one or more CV joints, depending on the vehicle’s drivetrain configuration. In front-wheel drive vehicles, each front axle typically has two CV joints, one inner and one outer. Rear-wheel drive and all-wheel drive vehicles may have CV joints on both the front and rear axles.

The CV joint consists of a joint housing, bearings, and internal ball bearings or rollers. It is protected by a rubber or thermoplastic CV joint boot, which seals in the grease and protects the joint from contaminants. When the CV joint fails, it can affect the axle’s ability to transmit power smoothly and result in the symptoms mentioned above.

Regular inspection and maintenance of the CV joint and axle assembly are crucial to identify and address any issues promptly. If any of the symptoms mentioned earlier are observed, it is recommended to have the vehicle inspected by a qualified mechanic to determine the exact cause and perform necessary repairs or replacements.

axle

What is the primary function of an axle in a vehicle or machinery?

An axle plays a vital role in both vehicles and machinery, providing essential functions for their operation. The primary function of an axle is to transmit rotational motion and torque from an engine or power source to the wheels or other rotating components. Here are the key functions of an axle:

  1. Power Transmission:
  2. An axle serves as a mechanical link between the engine or power source and the wheels or driven components. It transfers rotational motion and torque generated by the engine to the wheels, enabling the vehicle or machinery to move. As the engine rotates the axle, the rotational force is transmitted to the wheels, propelling the vehicle forward or driving the machinery’s various components.

  3. Support and Load Bearing:
  4. An axle provides structural support and load-bearing capability, especially in vehicles. It bears the weight of the vehicle or machinery and distributes it evenly across the wheels or supporting components. This load-bearing function ensures stability, balance, and proper weight distribution, contributing to safe and efficient operation.

  5. Wheel and Component Alignment:
  6. The axle helps maintain proper alignment of the wheels or rotating components. It ensures that the wheels are parallel to each other and perpendicular to the ground, promoting stability and optimal tire contact with the road surface. In machinery, the axle aligns and supports the rotating components, ensuring their correct positioning and enabling smooth and efficient operation.

  7. Suspension and Absorption of Shocks:
  8. In vehicles, particularly those with independent suspension systems, the axle plays a role in the suspension system’s operation. It may incorporate features such as differential gears, CV joints, or other mechanisms that allow the wheels to move independently while maintaining power transfer. The axle also contributes to absorbing shocks and vibrations caused by road irregularities, enhancing ride comfort and vehicle handling.

  9. Steering Control:
  10. In some vehicles, such as trucks or buses, the front axle also serves as a steering axle. It connects to the steering mechanism, allowing the driver to control the direction of the vehicle. By turning the axle, the driver can steer the wheels, enabling precise maneuverability and navigation.

  11. Braking:
  12. An axle often integrates braking components, such as brake discs, calipers, or drums. These braking mechanisms are actuated when the driver applies the brakes, creating friction against the rotating axle or wheels and causing deceleration or stopping of the vehicle. The axle’s design can affect braking performance, ensuring effective and reliable stopping power.

Overall, the primary function of an axle in both vehicles and machinery is to transmit rotational motion, torque, and power from the engine or power source to the wheels or rotating components. Additionally, it provides support, load-bearing capability, alignment, suspension, steering control, and braking functions, depending on the specific application and design requirements.

China manufacturer Trailer Parts Use Trailer Axle Suspension Parts Axle Sale American Type Axle 13 Tons Axle for Trailertrailer Axle for Trailer   axle bearingChina manufacturer Trailer Parts Use Trailer Axle Suspension Parts Axle Sale American Type Axle 13 Tons Axle for Trailertrailer Axle for Trailer   axle bearing
editor by CX 2024-04-17

China manufacturer 16t Trailer Parts Germany Type Axle BPW Axle Best Selling axle bearing

Product Description

Product Parameters

GERMANY TYPE AXLE SPECIFICATIONS
AXLE TYPE  BRAKE SIZE WHEEL FIXING    NO.XSIZE OF WHEEL STUD (DIM A)    WHEEL REG.DIA.(DIM B)  DIM D     MIN WHEEL SIZE  BEAM SIZE    TRACK LENGTH(DIM C)    AXLE CAPACITY    SPRING SEAT INSTALLATION  WEIGHT 
 KMD1218I  420X180   ISO  10xM22x335   281  711.5  20´´  square150  1840mm  12T  ≤450  370KG
 KMD1218J  420X180  JAP   8xM20x285   221  711.5  20´´  square150  1840mm  12T   ≤450  370KG
 KMD1220I  420X200   ISO  10xM22x335   281  721.5  20´´  square150  1840mm  13T   ≤450  397KG
 KMD1418I  420X180   ISO  10xM22x335   281    733  20´´  square150  1840mm  14T   ≤450  400KG
 KMD1420I  420X200   ISO  10xM22x335   281  743  20´´  square150  1840mm  14T   ≤450  417KG
 KMD1618I  420X180   ISO  10xM22x335   281  723  20´´  square150  1870mm  16T   ≤450  450KG
 KMD1620I  420X200   ISO  10xM22x335   281  733  20´´  square150  1870mm  16T   ≤450  459KG
 KMD1622I  420X220   ISO  10xM22x335   281  733  20´´  square150  1870mm  16T   ≤450  465KG

BPW type siem-trailer alxe 

Supply Ability:
100 Set/Sets per Day tractor parts axle
Packaging & Delivery
Packaging Details
in nude or as requirement;
Port HangZhou or other ports in China
Lead Time :
Shipped in 20 days after payment

Product Description

 

Certifications

Packaging & Shipping

FAQ

Q1:Are you a factory? 
A:Yes,we are a factory,but not just a factory,as we have sales team,our own offices,and they
all can help the buyers and cooperative partners to decide which products are the best choices
for them,and all your requirements and inquires will be replyed in time.
  
Q2:What’s your Delivery Time?
A:In general, the delivery time is 15-20 days.We will make the delivery as soon as possible with
the guaranted quality.
 
Q3:What is the convenient way to pay?
A:L/C , T/T,Unionpay,DP are accepted,and if you have a better idea , please be free sharing with us.
 
Q4:Which type of shipping would be better?
A:Generally,in consideration of the cheap and safe superiorities of sea transportation,we advice
to make delivery by sea.What’s more, we respect your views of other transportation as well.

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1year
Condition: New
Axle Number: 1
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

axle

Are there guidelines for choosing the right axle for towing heavy loads?

When it comes to towing heavy loads, selecting the appropriate axle is crucial for ensuring safe and efficient towing performance. While the specific guidelines may vary depending on the vehicle and towing requirements, there are general considerations to keep in mind when choosing the right axle. Here’s a detailed explanation of the guidelines for selecting the right axle for towing heavy loads:

Gross Axle Weight Rating (GAWR):

One of the primary factors to consider is the Gross Axle Weight Rating (GAWR) provided by the vehicle manufacturer. The GAWR specifies the maximum weight that an axle is designed to support safely. It is essential to ensure that the selected axle’s GAWR is sufficient to handle the anticipated weight of the loaded trailer and any additional cargo or passengers in the towing vehicle. Exceeding the GAWR can lead to axle failure, compromised handling, and safety risks.

Towing Capacity:

Check the towing capacity of your vehicle, which represents the maximum weight that the vehicle is rated to tow. The axle’s capacity should align with the towing capacity to ensure safe and efficient towing. Consider the type and size of the trailer you intend to tow, including its loaded weight, tongue weight, and any weight distribution considerations. The axle should be capable of handling the anticipated load without exceeding its capacity.

Matching Axle and Suspension:

The axle and suspension system work together to support the weight of the vehicle and the trailer being towed. It is important to ensure that the axle and suspension are properly matched to provide adequate support and stability. Consider the type of suspension (leaf springs, coil springs, air suspension) and the axle’s design (solid axle, independent suspension) to ensure compatibility and optimal towing performance.

Braking System:

When towing heavy loads, the braking system plays a critical role in maintaining control and safety. Ensure that the axle is equipped with appropriate brakes that can handle the increased load. Consider the type of brakes, such as electric brakes or hydraulic brakes, and their capacity to provide sufficient stopping power for the combined weight of the towing vehicle and trailer.

Weight Distribution:

Proper weight distribution is essential for safe towing. The axle should be selected based on the anticipated weight distribution between the towing vehicle and the trailer. Consider factors like tongue weight and the use of weight distribution hitches or sway control devices to ensure balanced weight distribution and optimal handling characteristics.

Consult Manufacturer Recommendations:

Always refer to the vehicle manufacturer’s recommendations, specifications, and guidelines when selecting an axle for towing heavy loads. The manufacturer’s guidelines will provide accurate and vehicle-specific information to help you make the right choice. Consult the owner’s manual or contact the manufacturer directly for any specific towing-related recommendations.

It’s important to note that towing requirements and axle specifications can vary depending on the vehicle make and model, as well as regional regulations. It is advisable to consult with automotive experts, such as mechanics or dealerships, who have expertise in towing and can provide specific recommendations based on your vehicle and towing needs.

axle

Can you recommend axle manufacturers known for durability and reliability?

When it comes to choosing axle manufacturers known for durability and reliability, there are several reputable companies in the automotive industry. While individual experiences and preferences may vary, the following axle manufacturers have a track record of producing high-quality products:

1. Dana Holding Corporation: Dana is a well-known manufacturer of axles, drivetrain components, and sealing solutions. They supply axles to various automotive manufacturers and have a reputation for producing durable and reliable products. Dana axles are commonly found in trucks, SUVs, and off-road vehicles.

2. AAM (American Axle & Manufacturing): AAM is a leading manufacturer of driveline and drivetrain components, including axles. They supply axles to both OEMs (Original Equipment Manufacturers) and the aftermarket. AAM axles are known for their durability and are often found in trucks, SUVs, and performance vehicles.

3. GKN Automotive: GKN Automotive is a global supplier of driveline systems, including axles. They have a strong reputation for producing high-quality and reliable axles for a wide range of vehicles. GKN Automotive supplies axles to various automakers and is recognized for their technological advancements in the field.

4. Meritor: Meritor is a manufacturer of axles, brakes, and other drivetrain components for commercial vehicles. They are known for their robust and reliable axle products that cater to heavy-duty applications in the commercial trucking industry.

5. Spicer (Dana Spicer): Spicer, a division of Dana Holding Corporation, specializes in manufacturing drivetrain components, including axles. Spicer axles are widely used in off-road vehicles, trucks, and SUVs. They are known for their durability and ability to withstand demanding off-road conditions.

6. Timken: Timken is a trusted manufacturer of bearings, seals, and other mechanical power transmission products. While they are primarily known for their bearings, they also produce high-quality axle components used in various applications, including automotive axles.

It’s important to note that the availability of specific axle manufacturers may vary depending on the region and the specific vehicle make and model. Additionally, different vehicles may come equipped with axles from different manufacturers as per the OEM’s selection and sourcing decisions.

When considering axle replacements or upgrades, it is advisable to consult with automotive experts, including mechanics or dealerships familiar with your vehicle, to ensure compatibility and make informed decisions based on your specific needs and requirements.

axle

What is the primary function of an axle in a vehicle or machinery?

An axle plays a vital role in both vehicles and machinery, providing essential functions for their operation. The primary function of an axle is to transmit rotational motion and torque from an engine or power source to the wheels or other rotating components. Here are the key functions of an axle:

  1. Power Transmission:
  2. An axle serves as a mechanical link between the engine or power source and the wheels or driven components. It transfers rotational motion and torque generated by the engine to the wheels, enabling the vehicle or machinery to move. As the engine rotates the axle, the rotational force is transmitted to the wheels, propelling the vehicle forward or driving the machinery’s various components.

  3. Support and Load Bearing:
  4. An axle provides structural support and load-bearing capability, especially in vehicles. It bears the weight of the vehicle or machinery and distributes it evenly across the wheels or supporting components. This load-bearing function ensures stability, balance, and proper weight distribution, contributing to safe and efficient operation.

  5. Wheel and Component Alignment:
  6. The axle helps maintain proper alignment of the wheels or rotating components. It ensures that the wheels are parallel to each other and perpendicular to the ground, promoting stability and optimal tire contact with the road surface. In machinery, the axle aligns and supports the rotating components, ensuring their correct positioning and enabling smooth and efficient operation.

  7. Suspension and Absorption of Shocks:
  8. In vehicles, particularly those with independent suspension systems, the axle plays a role in the suspension system’s operation. It may incorporate features such as differential gears, CV joints, or other mechanisms that allow the wheels to move independently while maintaining power transfer. The axle also contributes to absorbing shocks and vibrations caused by road irregularities, enhancing ride comfort and vehicle handling.

  9. Steering Control:
  10. In some vehicles, such as trucks or buses, the front axle also serves as a steering axle. It connects to the steering mechanism, allowing the driver to control the direction of the vehicle. By turning the axle, the driver can steer the wheels, enabling precise maneuverability and navigation.

  11. Braking:
  12. An axle often integrates braking components, such as brake discs, calipers, or drums. These braking mechanisms are actuated when the driver applies the brakes, creating friction against the rotating axle or wheels and causing deceleration or stopping of the vehicle. The axle’s design can affect braking performance, ensuring effective and reliable stopping power.

Overall, the primary function of an axle in both vehicles and machinery is to transmit rotational motion, torque, and power from the engine or power source to the wheels or rotating components. Additionally, it provides support, load-bearing capability, alignment, suspension, steering control, and braking functions, depending on the specific application and design requirements.

China manufacturer 16t Trailer Parts Germany Type Axle BPW Axle Best Selling   axle bearingChina manufacturer 16t Trailer Parts Germany Type Axle BPW Axle Best Selling   axle bearing
editor by CX 2024-02-11

China Professional CNC Equipment Parts Bearing Steel Drive Threaded Shaft with Free Design Custom

Product Description

HangZhou FRIMA is IATF16949 certificated manufacturer ,positioned in HangZhou,China.We are specialised in producing custom-created precision Machining Factors. We offer a broad range of production solutions, like machining, and stamping Our engineering group has rich knowledge in operating in this field for a lot of a long time.
We have specialist quality handle group which is developed up by prosperous experienced QC & QA. They will keep track of every approach of manufacturing. Every single part or element will go by way of our QA for closing inspection and tests. Make confident every item is beneath customer’s requirement just before CZPT buyers.
Our target is to shut the gap and provide reduce expense production during the world. Sourcing your elements with FRIMA is the closest factor to working your possess production facility in China. We supply extreme flexibility for you and your undertaking demands.

HangZhou FRIMA will supply you with the pursuing advantages and advantages:

·More saving on producing expense.
·State-of-the-art producing amenities.
·On internet site production supervision for quality manage.
·Bilingual engineers reporting on your task.
·Reasonable brief lead time.

Equipments: CNC machining centre, CNC Lathe, milling equipment, standard lathe, grinding equipment, wire-minimize device, top gauge, projector, and other specific types.
Components: Aluminum, Alloy metal, Stainless Steel, brass, etc.
About 80% of FRIMAI’s enterprise is exported, and twenty% domestic. FRIMAhas very rigorous good quality control ask for and technique primarily based on IATF16949 administration system.
Any enquiries and orders together with drawing or sample as well as investments are really welcomed. We sincerely desire to cooperate with your organization and create brilliance.

Feature of CNC areas
one. Precision Cnc stainless steel areas strictly in accordance to customer’s drawing, packing, and quality request
2. Tolerance: Can be retained at +/-.005mm
three. The most innovative CMM inspector to guarantee the top quality
4. Skilled technologies engineers and effectively-educated personnel
five. Fast and timely shipping and delivery. Speedily&professional provider
6. Quality assurance in accordance with PPAP-3 amount method inIATF16949 

 

Materials Obtainable for CNC Turning Provider

Conditions and Conditions 

Our advantage:
11 many years 1-stop tailored metallic items manufacturing facility.

We will total various processing types dependent on customers’ processing wants and blend various processing techniques to
give buyers the best options these kinds of as CNC machining turning milling stamping forging extrusion casting bending welding and so forth.

ODM/OEM quick provider

We can do it you only need to offer your task drawings and samples and we can customise and manufacture for you.

Provide high-good quality merchandise at a competitive price

Custom-made processing can be obtained inside of 5 doing work days to acquire prototypes and modest batch production parts to supply customers with
higher-good quality and lower-cost CNC processed items.

 

WMeasuring Facilties Quadratic Element,Height Gauge,Micrometer,Gauge Block,Needle Gauge,Plug gauge,Caliper,Screw Thread Gauge
Machining Facilities Machining Tolerance(mm) Mchining Precision(mm) Qty Self-owned
CNC Machining Centre 800×500 0.005-0.01 20pcs Head Plant
CNC Machining Centre 650×500 0.005-0.01 5pcs Head Plant
CNC Turning 750×40 0.015-0.005 20pcs Head Plant
Turning 750×250 0.01-0.02 10pcs Head Plant
Milling 1200×550 0.01-0.02 6pcs Head Plant
Grinding 160x360x280 0.005-0.01 4pcs Head Plant
Grinding 300×680 0.01 1pcs Head Plant
Wire-cutting 400×350 0.01-0.02 4pcs Head Plant

###

Material Stainless steel SS201 SS303 SS304 SS316 17-4PH SUS440C
Steel  Q235 20#-45#  etc
Brass  C36000(C26800)  C37700(HPb59) C38500(HP6 58) C27200(CuzN37)etc
Iron 1213 12L14 1215 etc
Bronze C51000 C52100 C5400etc
Aluminum Al6061 Al6063 Al7075 AL5052 etc
Alloy A2 D2 SKD11 DF2 XW/5 ASP-23

###

Our Processing CNC machining, CNC milling and turning, drilling, grinding, stamping, tapping, 
Surface finish Hard Coating/Black Anodize/ Clear Anodize/ Hard Chrome /Clear Zinc/Plasma Niride
Tolerance 0.005mm
QC System 100% inspection before shipment
Drawing format CAD / PDF/ DWG/ IGS/ STEP/So
Packaging Standard package / Carton box or Pallet / As per customized specifications
Testing equipment CMM (Coordinate Measuring Machine), Height gauge, Caliper,  Hardness tester, Roughness tester, Projector machine, Pin/Angle/Block/Plug/Thickness/Thread/Radius gauge, etc.
Trade terms EXW, FOB, CIF, As per the customer’s request
Shipment Terms 1) 0-100kg: express & air freight priority
2) >100kg: sea freight priority
3) As per customized specifications
Note All CNC machining parts are custom-made according to the customer’s drawings or samples, with no stock. If you have any CNC machining parts to be made, please feel free to send your kind drawings/samples to us anytime by email.
Surface Finish Anodized/Zinc/Nickle/ZiNi plating 
WMeasuring Facilties Quadratic Element,Height Gauge,Micrometer,Gauge Block,Needle Gauge,Plug gauge,Caliper,Screw Thread Gauge
Machining Facilities Machining Tolerance(mm) Mchining Precision(mm) Qty Self-owned
CNC Machining Centre 800×500 0.005-0.01 20pcs Head Plant
CNC Machining Centre 650×500 0.005-0.01 5pcs Head Plant
CNC Turning 750×40 0.015-0.005 20pcs Head Plant
Turning 750×250 0.01-0.02 10pcs Head Plant
Milling 1200×550 0.01-0.02 6pcs Head Plant
Grinding 160x360x280 0.005-0.01 4pcs Head Plant
Grinding 300×680 0.01 1pcs Head Plant
Wire-cutting 400×350 0.01-0.02 4pcs Head Plant

###

Material Stainless steel SS201 SS303 SS304 SS316 17-4PH SUS440C
Steel  Q235 20#-45#  etc
Brass  C36000(C26800)  C37700(HPb59) C38500(HP6 58) C27200(CuzN37)etc
Iron 1213 12L14 1215 etc
Bronze C51000 C52100 C5400etc
Aluminum Al6061 Al6063 Al7075 AL5052 etc
Alloy A2 D2 SKD11 DF2 XW/5 ASP-23

###

Our Processing CNC machining, CNC milling and turning, drilling, grinding, stamping, tapping, 
Surface finish Hard Coating/Black Anodize/ Clear Anodize/ Hard Chrome /Clear Zinc/Plasma Niride
Tolerance 0.005mm
QC System 100% inspection before shipment
Drawing format CAD / PDF/ DWG/ IGS/ STEP/So
Packaging Standard package / Carton box or Pallet / As per customized specifications
Testing equipment CMM (Coordinate Measuring Machine), Height gauge, Caliper,  Hardness tester, Roughness tester, Projector machine, Pin/Angle/Block/Plug/Thickness/Thread/Radius gauge, etc.
Trade terms EXW, FOB, CIF, As per the customer’s request
Shipment Terms 1) 0-100kg: express & air freight priority
2) >100kg: sea freight priority
3) As per customized specifications
Note All CNC machining parts are custom-made according to the customer’s drawings or samples, with no stock. If you have any CNC machining parts to be made, please feel free to send your kind drawings/samples to us anytime by email.
Surface Finish Anodized/Zinc/Nickle/ZiNi plating 

What is a driveshaft and how much does it cost to replace one?

Your vehicle is made up of many moving parts. Knowing each part is important because a damaged driveshaft can seriously damage other parts of the car. You may not know how important your driveshaft is, but it’s important to know if you want to fix your car. In this article, we’ll discuss what a driveshaft is, what its symptoms are, and how much it costs to replace a driveshaft.
air-compressor

Repair damaged driveshafts

A damaged driveshaft does not allow you to turn the wheels freely. It also exposes your vehicle to higher repair costs due to damaged driveshafts. If the drive shaft breaks while the car is in motion, it may cause a crash. Also, it can significantly affect the performance of the car. If you don’t fix the problem right away, you could risk more expensive repairs. If you suspect that the drive shaft is damaged, do the following.
First, make sure the drive shaft is protected from dust, moisture, and dust. A proper driveshaft cover will prevent grease from accumulating in the driveshaft, reducing the chance of further damage. The grease will also cushion the metal-to-metal contact in the constant velocity joints. For example, hitting a soft material is better than hitting a metal wall. A damaged prop shaft can not only cause difficult cornering, but it can also cause the vehicle to vibrate, which can further damage the rest of the drivetrain.
If the driveshaft is damaged, you can choose to fix it yourself or take it to a mechanic. Typically, driveshaft repairs cost around $200 to $300. Parts and labor may vary based on your vehicle type and type of repair. These parts can cost up to $600. However, if you don’t have a mechanical background, it’s better to leave it to a professional.
If you notice that one of the two drive shafts is worn, it’s time to repair it. Worn bushings and bearings can cause the drive shaft to vibrate unnecessarily, causing it to break and cause further damage. You can also check the center bearing if there is any play in the bearing. If these symptoms occur, it is best to take your car to a mechanic as soon as possible.
air-compressor

Learn about U-joints

While most vehicles have at least one type of U-joint, there are other types available. CV joints (also known as hot rod joints) are used in a variety of applications. The minor axis is shorter than the major axis on which the U-joint is located. In both cases, the U-joints are lubricated at the factory. During servicing, the drive shaft slip joint should be lubricated.
There are two main styles of U-joints, including forged and press fit. They are usually held in place by C-clamps. Some of these U-joints have knurls or grooves. When selecting the correct fitting, be sure to measure the entire fitting. To make sure you get the correct size, you can use the size chart or check the manual for your specific model.
In addition to lubrication, the condition of the U-joint should be checked regularly. Lubricate them regularly to avoid premature failure. If you hear a clicking sound when shifting gears, the u-joint space may be misaligned. In this case, the bearing may need to be serviced. If there is insufficient grease in the bearings, the universal joint may need to be replaced.
U-joint is an important part of the automobile transmission shaft. Without them, your car would have no wheeled suspension. Without them, your vehicle will have a rickety front end and a wobbly rear end. Because cars can’t drive on ultra-flat surfaces, they need flexible driveshafts. The U-joint compensates for this by allowing it to move up and down with the suspension.
A proper inspection will determine if your u-joints are loose or worn. It should be easy to pull them out. Make sure not to pull them all the way out. Also, the bearing caps should not move. Any signs of roughness or wear would indicate a need for a new UJ. Also, it is important to note that worn UJs cannot be repaired.

Symptoms of Driveshaft Failure

One of the most common problems associated with a faulty driveshaft is difficulty turning the wheels. This severely limits your overall control over the vehicle. Fortunately, there are several symptoms that could indicate that your driveshaft is failing. You should take immediate steps to determine the cause of the problem. One of the most common causes of driveshaft failure is a weak or faulty reverse gear. Other common causes of driveshaft damage include driving too hard, getting stuck in reverse gear and differential lock.
Another sign of a failed driveshaft is unusual noise while driving. These noises are usually the result of wear on the bushings and bearings that support the drive shaft. They can also cause your car to screech or scratch when switching from drive to idle. Depending on the speed, the noise may be accompanied by vibration. When this happens, it’s time to send your vehicle in for a driveshaft replacement.
One of the most common symptoms of driveshaft failure is noticeable jitter when accelerating. This could be a sign of a loose U-joint or worn center bearing. You should thoroughly inspect your car to determine the cause of these sounds and corresponding symptoms. A certified mechanic can help you determine the cause of the noise. A damaged propshaft can severely limit the drivability of the vehicle.
Regular inspection of the drive shaft can prevent serious damage. Depending on the damage, you can replace the driveshaft for anywhere from $500 to $1,000. Depending on the severity of the damage and the level of repair, the cost will depend on the number of parts that need to be replaced. Do not drive with a bad driveshaft as it can cause a serious crash. There are several ways to avoid this problem entirely.
The first symptom to look for is a worn U-joint. If the U-joint comes loose or moves too much when trying to turn the steering wheel, the driveshaft is faulty. If you see visible rust on the bearing cap seals, you can take your car to a mechanic for a thorough inspection. A worn u-joint can also indicate a problem with the transmission.
air-compressor

The cost of replacing the drive shaft

Depending on your state and service center, a driveshaft repair can cost as little as $300 or as high as $2,000, depending on the specifics of your car. Labor costs are usually around $70. Prices for the parts themselves range from $400 to $600. Labor costs also vary by model and vehicle make. Ultimately, the decision to repair or replace the driveshaft will depend on whether you need a quick car repair or a full car repair.
Some cars have two separate driveshafts. One goes to the front and the other goes to the back. If your car has four wheel drive, you will have two. If you’re replacing the axles of an all-wheel-drive car, you’ll need a special part for each axle. Choosing the wrong one can result in more expensive repairs. Before you start shopping, you should know exactly how much it will cost.
Depending on the type of vehicle you own, a driveshaft replacement will cost between PS250 and PS500. Luxury cars can cost as much as PS400. However, for safety and the overall performance of the car, replacing the driveshaft may be a necessary repair. The cost of replacing a driveshaft depends on how long your car has been on the road and how much wear and tear it has experienced. There are some symptoms that indicate a faulty drive shaft and you should take immediate action.
Repairs can be expensive, so it’s best to hire a mechanic with experience in the field. You’ll be spending hundreds of dollars a month, but you’ll have peace of mind knowing the job will be done right. Remember that you may want to ask a friend or family member to help you. Depending on the make and model of your car, replacing the driveshaft is more expensive than replacing the parts and doing it yourself.
If you suspect that your drive shaft is damaged, be sure to fix it as soon as possible. It is not advisable to drive a car with abnormal vibration and sound for a long time. Fortunately, there are some quick ways to fix the problem and avoid costly repairs later. If you’ve noticed the symptoms above, it’s worth getting the job done. There are many signs that your driveshaft may need service, including lack of power or difficulty moving the vehicle.

China Standard Murata Spare Parts Spindle Bearing for Textile wholesaler

Product Description

Synthetic fiber spindles

The flexible centering sleeve with spiral slot, provide the ideal connection between the fixed neck bearing and the footstep bearing.
The special designed lower insert can efficiently reduce the heat in running and give the spindles longer life.
Chromium -plate spindle blade on the upper part, resulting in smooth surface, anti -rust and easy waste -removing.
High carrying capacity, Small amplitude, Lower noise.
Different types can be provided according to the demands of users.
 

TYPE H h l L0 D D1 M Bearing type MACHINE REMARKS
D3621 66 116 419 620 Φ50 Φ19 M36×1.5 DZ6 FA726 Fig.1
D3622 Φ70 FA727
D3603 50 122 401 586 Φ50 M35×1.5 VC443A Fig.2
D3603A 100 372 564 VC443
HZD04 44 108 386 573.6 M402

 FJ series winding bearings
The running axle replaces as the inner ring, which makes the bearing more compact.
Advanced heat treating technology ensures the axle high surface’s hardness and strength, good resistance to abrasion.
Filled with high speed grease and fitted with complete sealed construction.
The maximum speed is 20000rpm.
  
Products pictrues:

    
   

The Different Types of Splines in a Splined Shaft

A splined shaft is a machine component with internal and external splines. The splines are formed in 4 different ways: Involute, Parallel, Serrated, and Ball. You can learn more about each type of spline in this article. When choosing a splined shaft, be sure to choose the right 1 for your application. Read on to learn about the different types of splines and how they affect the shaft’s performance.
splineshaft

Involute splines

Involute splines in a splined shaft are used to secure and extend mechanical assemblies. They are smooth, inwardly curving grooves that resist separation during operation. A shaft with involute splines is often longer than the shaft itself. This feature allows for more axial movement. This is beneficial for many applications, especially in a gearbox.
The involute spline is a shaped spline, similar to a parallel spline. It is angled and consists of teeth that create a spiral pattern that enables linear and rotatory motion. It is distinguished from other splines by the serrations on its flanks. It also has a flat top. It is a good option for couplers and other applications where angular movement is necessary.
Involute splines are also called involute teeth because of their shape. They are flat on the top and curved on the sides. These teeth can be either internal or external. As a result, involute splines provide greater surface contact, which helps reduce stress and fatigue. Regardless of the shape, involute splines are generally easy to machine and fit.
Involute splines are a type of splines that are used in splined shafts. These splines have different names, depending on their diameters. An example set of designations is for a 32-tooth male spline, a 2,500-tooth module, and a 30 degree pressure angle. An example of a female spline, a fillet root spline, is used to describe the diameter of the splined shaft.
The effective tooth thickness of splines is dependent on the number of keyways and the type of spline. Involute splines in splined shafts should be designed to engage 25 to 50 percent of the spline teeth during the coupling. Involute splines should be able to withstand the load without cracking.

Parallel splines

Parallel splines are formed on a splined shaft by putting 1 or more teeth into another. The male spline is positioned at the center of the female spline. The teeth of the male spline are also parallel to the shaft axis, but a common misalignment causes the splines to roll and tilt. This is common in many industrial applications, and there are a number of ways to improve the performance of splines.
Typically, parallel splines are used to reduce friction in a rotating part. The splines on a splined shaft are narrower on the end face than the interior, which makes them more prone to wear. This type of spline is used in a variety of industries, such as machinery, and it also allows for greater efficiency when transmitting torque.
Involute splines on a splined shaft are the most common. They have equally spaced teeth, and are therefore less likely to crack due to fatigue. They also tend to be easy to cut and fit. However, they are not the best type of spline. It is important to understand the difference between parallel and involute splines before deciding on which spline to use.
The difference between splined and involute splines is the size of the grooves. Involute splines are generally larger than parallel splines. These types of splines provide more torque to the gear teeth and reduce stress during operation. They are also more durable and have a longer life span. And because they are used on farm machinery, they are essential in this type of application.
splineshaft

Serrated splines

A Serrated Splined Shaft has several advantages. This type of shaft is highly adjustable. Its large number of teeth allows large torques, and its shorter tooth width allows for greater adjustment. These features make this type of shaft an ideal choice for applications where accuracy is critical. Listed below are some of the benefits of this type of shaft. These benefits are just a few of the advantages. Learn more about this type of shaft.
The process of hobbing is inexpensive and highly accurate. It is useful for external spline shafts, but is not suitable for internal splines. This type of process forms synchronized shapes on the shaft, reducing the manufacturing cycle and stabilizing the relative phase between spline and thread. It uses a grinding wheel to shape the shaft. CZPT Manufacturing has a large inventory of Serrated Splined Shafts.
The teeth of a Serrated Splined Shaft are designed to engage with the hub over the entire circumference of the shaft. The teeth of the shaft are spaced uniformly around the spline, creating a multiple-tooth point of contact over the entire length of the shaft. The results of these analyses are usually satisfactory. But there are some limitations. To begin with, the splines of the Serrated Splined Shaft should be chosen carefully. If the application requires large-scale analysis, it may be necessary to modify the design.
The splines of the Serrated Splined Shaft are also used for other purposes. They can be used to transmit torque to another device. They also act as an anti-rotational device and function as a linear guide. Both the design and the type of splines determine the function of the Splined Shaft. In the automobile industry, they are used in vehicles, aerospace, earth-moving machinery, and many other industries.

Ball splines

The invention relates to a ball-spinned shaft. The shaft comprises a plurality of balls that are arranged in a series and are operatively coupled to a load path section. The balls are capable of rolling endlessly along the path. This invention also relates to a ball bearing. Here, a ball bearing is 1 of the many types of gears. The following discussion describes the features of a ball bearing.
A ball-splined shaft assembly comprises a shaft with at least 1 ball-spline groove and a plurality of circumferential step grooves. The shaft is held in a first holding means that extends longitudinally and is rotatably held by a second holding means. Both the shaft and the first holding means are driven relative to 1 another by a first driving means. It is possible to manufacture a ball-splined shaft in a variety of ways.
A ball-splined shaft features a nut with recirculating balls. The ball-splined nut rides in these grooves to provide linear motion while preventing rotation. A splined shaft with a nut that has recirculating balls can also provide rotary motion. A ball splined shaft also has higher load capacities than a ball bushing. For these reasons, ball splines are an excellent choice for many applications.
In this invention, a pair of ball-spinned shafts are housed in a box under a carrier device 40. Each of the 2 shafts extends along a longitudinal line of arm 50. One end of each shaft is supported rotatably by a slide block 56. The slide block also has a support arm 58 that supports the center arm 50 in a cantilever fashion.
splineshaft

Sector no-go gage

A no-go gauge is a tool that checks the splined shaft for oversize. It is an effective way to determine the oversize condition of a splined shaft without removing the shaft. It measures external splines and serrations. The no-go gage is available in sizes ranging from 19mm to 130mm with a 25mm profile length.
The sector no-go gage has 2 groups of diametrally opposed teeth. The space between them is manufactured to a maximum space width and the tooth thickness must be within a predetermined tolerance. This gage would be out of tolerance if the splines were measured with a pin. The dimensions of this splined shaft can be found in the respective ANSI or DIN standards.
The go-no-go gage is useful for final inspection of thread pitch diameter. It is also useful for splined shafts and threaded nuts. The thread of a screw must match the contour of the go-no-go gage head to avoid a no-go condition. There is no substitute for a quality machine. It is an essential tool for any splined shaft and fastener manufacturer.
The NO-GO gage can detect changes in tooth thickness. It can be calibrated under ISO17025 standards and has many advantages over a non-go gage. It also gives a visual reference of the thickness of a splined shaft. When the teeth match, the shaft is considered ready for installation. It is a critical process. In some cases, it is impossible to determine the precise length of the shaft spline.
The 45-degree pressure angle is most commonly used for axles and torque-delivering members. This pressure angle is the most economical in terms of tool life, but the splines will not roll neatly like a 30 degree angle. The 45-degree spline is more likely to fall off larger than the other two. Oftentimes, it will also have a crowned look. The 37.5 degree pressure angle is a compromise between the other 2 pressure angles. It is often used when the splined shaft material is harder than usual.

China Standard Murata Spare Parts Spindle Bearing for Textile     wholesaler China Standard Murata Spare Parts Spindle Bearing for Textile     wholesaler

China Good quality Trailer Parts Hub Bearing 750 Lbs-8000 Lbs Trailer Spare Parts Wheel Hub Bearing with Best Sales

Product Description

 

Product Description

item

Trailer Hub Bearing

Use

Trailer HUB Parts

Parts

Trailer Bearing

OE NO.

4inch to 12.25*5 inch Hub /Drum bearing

Max Payload

8000 lbs

Size

12.25*5″

Place of Origin

China

 

ZheJiang

Brand Name

Airui

Type

Light trailer bearing

Application

trailer axle

Detailed Specification:

7″ 9″ 10″ 11″ 12″ 12 1/4″ electric/hydraulic/mechanical brake assembly 
for almost all kinds of light and medium-duty trailer usage.

Iron frame with air bubble film and plastic film :

 

 

Our Advantage

 

1>Our joint venture partners are American Famous axle company AXLETEK,we have make a cooperation for 6 years.So we can supply stable and high quality brakes.

2>We have Researching and Development Department in Detroit,so we are also capable of developing products according drawing or samples to meet the special requirement of our customes.

3>We can supply 7 inch,10 inch,12 inch and 12.25 inch brakes for the moment.

4>All the parts for the brakes are produced by ourself,so we can supply our customer high quality products with resonable price.

5>We can also supply axle assemly.
 

 

Specification

 

 

 

  • more product models

 

Model No. Brake type Wideness Thickness Voltage Cylinder Max. Load
B07E(AZ008) Electric Brake 7 1 1/4 12   2,000 lb
B10E(AZ004) Electric Brake 10 2 1/4 12   3,500 lb
B11E(AZ017) Electric Brake 11 2 12   6,000 lb
B12E(AZ003) Electric Brake 12 2 12   7,000 lb
B35E(AZ056) Electric Brake 10 1 3/4 12   3,500 lb
B44E(AZ063) Electric Brake 10 2 1/4 12   4,400 lb
B10EA(AZ571) Electric Brake self-adjusting 10 2 1/4 12   3,500 lb
B11EA(AZ064) Electric Brake self-adjusting 11 2 12   6,000 lb
B12EA(AZ571) Electric Brake self-adjusting 12 2 12   7,000 lb
B35EA(AZ060) Electric Brake self-adjusting 10 1 3/4 12   3,500 lb
B44EA(AZ057) Electric Brake self-adjusting 10 2 1/4 12   4,400 lb
B10EAP(AZ037) Electric Brake self-adjusting w/parking 10 2 1/4 12   3,500 lb
B12EAP(AZ036) Electric Brake self-adjusting w/parking 12 2    12   7,000 lb
B07EP(AZ034) Electric Brake with Parking lever 7 1 1/4 12   2,000 lb
B10EP(AZ013) Electric Brake with Parking lever 10 2 1/4 12   3,500 lb
B12EP(AZ011) Electric Brake with Parking lever 12 2 12   7,000 lb
B35EP(AZ061) Electric Brake with Parking lever 10 1 3/4 12   3,500 lb
B44EP(AZ062) Electric Brake with Parking lever 10 2 1/4 12   4,400 lb
B09M(AZ038) Mechannical Brake 9 1 3/4     3,000 lb
B09H(AZ031) Hydraulic Brake 9 1 3/4   Duo-servo 3,000 lb
B10H(AZ007) Hydraulic Brake 10 2 1/4   Uni-servo 3,500 lb
B12H(AZ006) Hydraulic Brake 12 2   Uni-servo 7,000 lb
B10HB(AZ012) Hydraulic Brake free-backing 10 2 1/4   Uni-servo 3,500 lb
B12HB(AZ571) Hydraulic Brake free-backing 12   Uni-servo 7,000 lb
B10HBP(AZ019) Hydraulic Brake free-backing w/parking 10 2 1/4   Uni-servo 3,500 lb
B12HBP(AZ018) Hydraulic Brake free-backing w/parking 12 2   Uni-servo 7,000 lb
B10HP(AZ026) Hydraulic Brake with Parking lever 10 2 1/4   Uni-servo 3,500 lb
B12HP(AZ571) Hydraulic Brake with Parking lever 12 2   Uni-servo 7,000 lb
B1208E(AZ001a) Heavy duty Electric Brake 12 1/4 3 3/8 12   8,000 lb
B1210E(AZ001b) Heavy duty Electric Brake 12 1/4 3 3/8 12   10,000 lb
B1212E(AZ002) Heavy duty Electric Brake 12 1/4 5    12   12,000 lb
B1208EP(AZ035) Heavy duty Electric Brake w/Parking 12 1/4 3 3/8 12   8,000 lb
B1210EP(AZ001c) Heavy duty Electric Brake w/Parking 12 1/4 3 3/8 12   10,000 lb
B1210H(AZ571) Heavy duty Hydraulic Brake 12 1/4 3 3/8   Duo-servo 10,000 lb
…to be continued. More trailer chassis parts-axle,hub,drum,caliper… are available too

  

Packaging & Shipping

 

Generally, in neutral white boxes and brown cartons or as ur requirements.

All our products would be offerd to you only after they passed a series of serous tests. We offer them to you with an easy heart because we know you will be satisfied and safe with our product.

Company Profile

 

 

 

 

Established in 2006, HangZhou Airui Brake System Co., LTD is a Sino-American joint venture. The American AXLE TEKNOLOGY LLC is a famous AXLE company, specializing in the design, development and manufacture of AXLE and its parts, and has rich experience in the development of brakes, drums, AXLE and other trailer parts. One of the largest bridge and spare parts suppliers in Europe.

The company has passed the national CCC certification, ISO9001, TS16949 quality system certification, North American Vehicle parts AMECA certification, Canadian Standards Association CSA certification, ECE certification, technology has reached the world’s advanced level, and obtained a number of technical patents, has been widely recognized by customers. Company factory area of 65,000 square meters, more than 500 employees, including more than 30 professional technical research and development personnel, equipped with the world’s leading laboratory, specializing in trailer, rv bridge, brake, brake drum, spring suspension, connector, casters and related parts production, development and sales in one.

Products are mainly exported to the United States, Canada, Australia and other countries and regions. Core products, electromagnetic brake, axle, electromagnet, and other wheel end trailer parts, annual output of 2 million sets, accounting for more than 90% of the domestic export of similar products market share, North America 40-50% market share.

FAQ

1. who are we?

We are based in ZheJiang , China, start from 2006,sell to North America(67.00%),Oceania(20.00%),Domestic Market(6.00%),South America(00.00%),Eastern Europe(00.00%),Southeast Asia(00.00%),Africa(00.00%),Eastern Asia(00.00%),Western Europe(00.00%),Central America(00.00%). There are total about 301-500 people in our office.

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.what can you buy from us?
Brake Assembly and Parts,Axle Assembly and Parts,Brake Pad,Brake Lining

4. why should you buy from us not from other suppliers?
1> be good at the formulation explore and develop,development team rank top 3 in China
2> huge sales department in America
3>with 8 years manufacture experience
4>300 acers factory
5>ISO/TS16949 and CSA certification
6>products sales over the world

5. what services can we provide?
Accepted Delivery Terms: FOB,CFR,CIF,EXW;
Accepted Payment Currency:USD,JPY;
Accepted Payment Type: T/T,L/C,PayPal;
Language Spoken:English,Chinese,Spanish,Japanese,Portuguese,German,Arabic,French,Russian,Korean,Hindi,Italian

 

 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China Good quality Trailer Parts Hub Bearing 750 Lbs-8000 Lbs Trailer Spare Parts Wheel Hub Bearing     with Best SalesChina Good quality Trailer Parts Hub Bearing 750 Lbs-8000 Lbs Trailer Spare Parts Wheel Hub Bearing     with Best Sales

China Standard Brake Pads Trailer Parts Hub Bearing 750 Lbs-8000 Lbs Trailer Spare Parts Wheel Hub Bearing wholesaler

Product Description

 

Product Description

item

Trailer Hub Bearing

Use

Trailer HUB Parts

Parts

Trailer Bearing

OE NO.

4inch to 12.25*5 inch Hub /Drum bearing

Max Payload

8000 lbs

Size

12.25*5″

Place of Origin

China

 

ZheJiang

Brand Name

Airui

Type

Light trailer bearing

Application

trailer axle

Detailed Specification:

7″ 9″ 10″ 11″ 12″ 12 1/4″ electric/hydraulic/mechanical brake assembly 
for almost all kinds of light and medium-duty trailer usage.

Iron frame with air bubble film and plastic film :

 

 

Our Advantage

 

1>Our joint venture partners are American Famous axle company AXLETEK,we have make a cooperation for 6 years.So we can supply stable and high quality brakes.

2>We have Researching and Development Department in Detroit,so we are also capable of developing products according drawing or samples to meet the special requirement of our customes.

3>We can supply 7 inch,10 inch,12 inch and 12.25 inch brakes for the moment.

4>All the parts for the brakes are produced by ourself,so we can supply our customer high quality products with resonable price.

5>We can also supply axle assemly.
 

 

Specification

 

 

 

  • more product models

 

Model No. Brake type Wideness Thickness Voltage Cylinder Max. Load
B07E(AZ008) Electric Brake 7 1 1/4 12   2,000 lb
B10E(AZ004) Electric Brake 10 2 1/4 12   3,500 lb
B11E(AZ017) Electric Brake 11 2 12   6,000 lb
B12E(AZ003) Electric Brake 12 2 12   7,000 lb
B35E(AZ056) Electric Brake 10 1 3/4 12   3,500 lb
B44E(AZ063) Electric Brake 10 2 1/4 12   4,400 lb
B10EA(AZ571) Electric Brake self-adjusting 10 2 1/4 12   3,500 lb
B11EA(AZ064) Electric Brake self-adjusting 11 2 12   6,000 lb
B12EA(AZ571) Electric Brake self-adjusting 12 2 12   7,000 lb
B35EA(AZ060) Electric Brake self-adjusting 10 1 3/4 12   3,500 lb
B44EA(AZ057) Electric Brake self-adjusting 10 2 1/4 12   4,400 lb
B10EAP(AZ037) Electric Brake self-adjusting w/parking 10 2 1/4 12   3,500 lb
B12EAP(AZ036) Electric Brake self-adjusting w/parking 12 2    12   7,000 lb
B07EP(AZ034) Electric Brake with Parking lever 7 1 1/4 12   2,000 lb
B10EP(AZ013) Electric Brake with Parking lever 10 2 1/4 12   3,500 lb
B12EP(AZ011) Electric Brake with Parking lever 12 2 12   7,000 lb
B35EP(AZ061) Electric Brake with Parking lever 10 1 3/4 12   3,500 lb
B44EP(AZ062) Electric Brake with Parking lever 10 2 1/4 12   4,400 lb
B09M(AZ038) Mechannical Brake 9 1 3/4     3,000 lb
B09H(AZ031) Hydraulic Brake 9 1 3/4   Duo-servo 3,000 lb
B10H(AZ007) Hydraulic Brake 10 2 1/4   Uni-servo 3,500 lb
B12H(AZ006) Hydraulic Brake 12 2   Uni-servo 7,000 lb
B10HB(AZ012) Hydraulic Brake free-backing 10 2 1/4   Uni-servo 3,500 lb
B12HB(AZ571) Hydraulic Brake free-backing 12   Uni-servo 7,000 lb
B10HBP(AZ019) Hydraulic Brake free-backing w/parking 10 2 1/4   Uni-servo 3,500 lb
B12HBP(AZ018) Hydraulic Brake free-backing w/parking 12 2   Uni-servo 7,000 lb
B10HP(AZ026) Hydraulic Brake with Parking lever 10 2 1/4   Uni-servo 3,500 lb
B12HP(AZ571) Hydraulic Brake with Parking lever 12 2   Uni-servo 7,000 lb
B1208E(AZ001a) Heavy duty Electric Brake 12 1/4 3 3/8 12   8,000 lb
B1210E(AZ001b) Heavy duty Electric Brake 12 1/4 3 3/8 12   10,000 lb
B1212E(AZ002) Heavy duty Electric Brake 12 1/4 5    12   12,000 lb
B1208EP(AZ035) Heavy duty Electric Brake w/Parking 12 1/4 3 3/8 12   8,000 lb
B1210EP(AZ001c) Heavy duty Electric Brake w/Parking 12 1/4 3 3/8 12   10,000 lb
B1210H(AZ571) Heavy duty Hydraulic Brake 12 1/4 3 3/8   Duo-servo 10,000 lb
…to be continued. More trailer chassis parts-axle,hub,drum,caliper… are available too

  

Packaging & Shipping

 

Generally, in neutral white boxes and brown cartons or as ur requirements.

All our products would be offerd to you only after they passed a series of serous tests. We offer them to you with an easy heart because we know you will be satisfied and safe with our product.

Company Profile

 

 

 

 

Established in 2006, HangZhou Airui Brake System Co., LTD is a Sino-American joint venture. The American AXLE TEKNOLOGY LLC is a famous AXLE company, specializing in the design, development and manufacture of AXLE and its parts, and has rich experience in the development of brakes, drums, AXLE and other trailer parts. One of the largest bridge and spare parts suppliers in Europe.

The company has passed the national CCC certification, ISO9001, TS16949 quality system certification, North American Vehicle parts AMECA certification, Canadian Standards Association CSA certification, ECE certification, technology has reached the world’s advanced level, and obtained a number of technical patents, has been widely recognized by customers. Company factory area of 65,000 square meters, more than 500 employees, including more than 30 professional technical research and development personnel, equipped with the world’s leading laboratory, specializing in trailer, rv bridge, brake, brake drum, spring suspension, connector, casters and related parts production, development and sales in one.

Products are mainly exported to the United States, Canada, Australia and other countries and regions. Core products, electromagnetic brake, axle, electromagnet, and other wheel end trailer parts, annual output of 2 million sets, accounting for more than 90% of the domestic export of similar products market share, North America 40-50% market share.

FAQ

1. who are we?

We are based in ZheJiang , China, start from 2006,sell to North America(67.00%),Oceania(20.00%),Domestic Market(6.00%),South America(00.00%),Eastern Europe(00.00%),Southeast Asia(00.00%),Africa(00.00%),Eastern Asia(00.00%),Western Europe(00.00%),Central America(00.00%). There are total about 301-500 people in our office.

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.what can you buy from us?
Brake Assembly and Parts,Axle Assembly and Parts,Brake Pad,Brake Lining

4. why should you buy from us not from other suppliers?
1> be good at the formulation explore and develop,development team rank top 3 in China
2> huge sales department in America
3>with 8 years manufacture experience
4>300 acers factory
5>ISO/TS16949 and CSA certification
6>products sales over the world

5. what services can we provide?
Accepted Delivery Terms: FOB,CFR,CIF,EXW;
Accepted Payment Currency:USD,JPY;
Accepted Payment Type: T/T,L/C,PayPal;
Language Spoken:English,Chinese,Spanish,Japanese,Portuguese,German,Arabic,French,Russian,Korean,Hindi,Italian

 

 

The Different Types of Splines in a Splined Shaft

A splined shaft is a machine component with internal and external splines. The splines are formed in 4 different ways: Involute, Parallel, Serrated, and Ball. You can learn more about each type of spline in this article. When choosing a splined shaft, be sure to choose the right 1 for your application. Read on to learn about the different types of splines and how they affect the shaft’s performance.
splineshaft

Involute splines

Involute splines in a splined shaft are used to secure and extend mechanical assemblies. They are smooth, inwardly curving grooves that resist separation during operation. A shaft with involute splines is often longer than the shaft itself. This feature allows for more axial movement. This is beneficial for many applications, especially in a gearbox.
The involute spline is a shaped spline, similar to a parallel spline. It is angled and consists of teeth that create a spiral pattern that enables linear and rotatory motion. It is distinguished from other splines by the serrations on its flanks. It also has a flat top. It is a good option for couplers and other applications where angular movement is necessary.
Involute splines are also called involute teeth because of their shape. They are flat on the top and curved on the sides. These teeth can be either internal or external. As a result, involute splines provide greater surface contact, which helps reduce stress and fatigue. Regardless of the shape, involute splines are generally easy to machine and fit.
Involute splines are a type of splines that are used in splined shafts. These splines have different names, depending on their diameters. An example set of designations is for a 32-tooth male spline, a 2,500-tooth module, and a 30 degree pressure angle. An example of a female spline, a fillet root spline, is used to describe the diameter of the splined shaft.
The effective tooth thickness of splines is dependent on the number of keyways and the type of spline. Involute splines in splined shafts should be designed to engage 25 to 50 percent of the spline teeth during the coupling. Involute splines should be able to withstand the load without cracking.

Parallel splines

Parallel splines are formed on a splined shaft by putting 1 or more teeth into another. The male spline is positioned at the center of the female spline. The teeth of the male spline are also parallel to the shaft axis, but a common misalignment causes the splines to roll and tilt. This is common in many industrial applications, and there are a number of ways to improve the performance of splines.
Typically, parallel splines are used to reduce friction in a rotating part. The splines on a splined shaft are narrower on the end face than the interior, which makes them more prone to wear. This type of spline is used in a variety of industries, such as machinery, and it also allows for greater efficiency when transmitting torque.
Involute splines on a splined shaft are the most common. They have equally spaced teeth, and are therefore less likely to crack due to fatigue. They also tend to be easy to cut and fit. However, they are not the best type of spline. It is important to understand the difference between parallel and involute splines before deciding on which spline to use.
The difference between splined and involute splines is the size of the grooves. Involute splines are generally larger than parallel splines. These types of splines provide more torque to the gear teeth and reduce stress during operation. They are also more durable and have a longer life span. And because they are used on farm machinery, they are essential in this type of application.
splineshaft

Serrated splines

A Serrated Splined Shaft has several advantages. This type of shaft is highly adjustable. Its large number of teeth allows large torques, and its shorter tooth width allows for greater adjustment. These features make this type of shaft an ideal choice for applications where accuracy is critical. Listed below are some of the benefits of this type of shaft. These benefits are just a few of the advantages. Learn more about this type of shaft.
The process of hobbing is inexpensive and highly accurate. It is useful for external spline shafts, but is not suitable for internal splines. This type of process forms synchronized shapes on the shaft, reducing the manufacturing cycle and stabilizing the relative phase between spline and thread. It uses a grinding wheel to shape the shaft. CZPT Manufacturing has a large inventory of Serrated Splined Shafts.
The teeth of a Serrated Splined Shaft are designed to engage with the hub over the entire circumference of the shaft. The teeth of the shaft are spaced uniformly around the spline, creating a multiple-tooth point of contact over the entire length of the shaft. The results of these analyses are usually satisfactory. But there are some limitations. To begin with, the splines of the Serrated Splined Shaft should be chosen carefully. If the application requires large-scale analysis, it may be necessary to modify the design.
The splines of the Serrated Splined Shaft are also used for other purposes. They can be used to transmit torque to another device. They also act as an anti-rotational device and function as a linear guide. Both the design and the type of splines determine the function of the Splined Shaft. In the automobile industry, they are used in vehicles, aerospace, earth-moving machinery, and many other industries.

Ball splines

The invention relates to a ball-spinned shaft. The shaft comprises a plurality of balls that are arranged in a series and are operatively coupled to a load path section. The balls are capable of rolling endlessly along the path. This invention also relates to a ball bearing. Here, a ball bearing is 1 of the many types of gears. The following discussion describes the features of a ball bearing.
A ball-splined shaft assembly comprises a shaft with at least 1 ball-spline groove and a plurality of circumferential step grooves. The shaft is held in a first holding means that extends longitudinally and is rotatably held by a second holding means. Both the shaft and the first holding means are driven relative to 1 another by a first driving means. It is possible to manufacture a ball-splined shaft in a variety of ways.
A ball-splined shaft features a nut with recirculating balls. The ball-splined nut rides in these grooves to provide linear motion while preventing rotation. A splined shaft with a nut that has recirculating balls can also provide rotary motion. A ball splined shaft also has higher load capacities than a ball bushing. For these reasons, ball splines are an excellent choice for many applications.
In this invention, a pair of ball-spinned shafts are housed in a box under a carrier device 40. Each of the 2 shafts extends along a longitudinal line of arm 50. One end of each shaft is supported rotatably by a slide block 56. The slide block also has a support arm 58 that supports the center arm 50 in a cantilever fashion.
splineshaft

Sector no-go gage

A no-go gauge is a tool that checks the splined shaft for oversize. It is an effective way to determine the oversize condition of a splined shaft without removing the shaft. It measures external splines and serrations. The no-go gage is available in sizes ranging from 19mm to 130mm with a 25mm profile length.
The sector no-go gage has 2 groups of diametrally opposed teeth. The space between them is manufactured to a maximum space width and the tooth thickness must be within a predetermined tolerance. This gage would be out of tolerance if the splines were measured with a pin. The dimensions of this splined shaft can be found in the respective ANSI or DIN standards.
The go-no-go gage is useful for final inspection of thread pitch diameter. It is also useful for splined shafts and threaded nuts. The thread of a screw must match the contour of the go-no-go gage head to avoid a no-go condition. There is no substitute for a quality machine. It is an essential tool for any splined shaft and fastener manufacturer.
The NO-GO gage can detect changes in tooth thickness. It can be calibrated under ISO17025 standards and has many advantages over a non-go gage. It also gives a visual reference of the thickness of a splined shaft. When the teeth match, the shaft is considered ready for installation. It is a critical process. In some cases, it is impossible to determine the precise length of the shaft spline.
The 45-degree pressure angle is most commonly used for axles and torque-delivering members. This pressure angle is the most economical in terms of tool life, but the splines will not roll neatly like a 30 degree angle. The 45-degree spline is more likely to fall off larger than the other two. Oftentimes, it will also have a crowned look. The 37.5 degree pressure angle is a compromise between the other 2 pressure angles. It is often used when the splined shaft material is harder than usual.

China Standard Brake Pads Trailer Parts Hub Bearing 750 Lbs-8000 Lbs Trailer Spare Parts Wheel Hub Bearing     wholesaler China Standard Brake Pads Trailer Parts Hub Bearing 750 Lbs-8000 Lbs Trailer Spare Parts Wheel Hub Bearing     wholesaler

China supplier Trailer Parts Rims Hub Bearing 750 Lbs-8000 Lbs Trailer Spare Parts Wheel Hub Bearing with Free Design Custom

Product Description

 

Product Description

item

Trailer Hub Bearing

Use

Trailer HUB Parts

Parts

Trailer Bearing

OE NO.

4inch to 12.25*5 inch Hub /Drum bearing

Max Payload

8000 lbs

Size

12.25*5″

Place of Origin

China

 

ZheJiang

Brand Name

Airui

Type

Light trailer bearing

Application

trailer axle

Detailed Specification:

7″ 9″ 10″ 11″ 12″ 12 1/4″ electric/hydraulic/mechanical brake assembly 
for almost all kinds of light and medium-duty trailer usage.

Iron frame with air bubble film and plastic film :

 

 

Our Advantage

 

1>Our joint venture partners are American Famous axle company AXLETEK,we have make a cooperation for 6 years.So we can supply stable and high quality brakes.

2>We have Researching and Development Department in Detroit,so we are also capable of developing products according drawing or samples to meet the special requirement of our customes.

3>We can supply 7 inch,10 inch,12 inch and 12.25 inch brakes for the moment.

4>All the parts for the brakes are produced by ourself,so we can supply our customer high quality products with resonable price.

5>We can also supply axle assemly.
 

 

Specification

 

 

 

  • more product models

 

Model No. Brake type Wideness Thickness Voltage Cylinder Max. Load
B07E(AZ008) Electric Brake 7 1 1/4 12   2,000 lb
B10E(AZ004) Electric Brake 10 2 1/4 12   3,500 lb
B11E(AZ017) Electric Brake 11 2 12   6,000 lb
B12E(AZ003) Electric Brake 12 2 12   7,000 lb
B35E(AZ056) Electric Brake 10 1 3/4 12   3,500 lb
B44E(AZ063) Electric Brake 10 2 1/4 12   4,400 lb
B10EA(AZ571) Electric Brake self-adjusting 10 2 1/4 12   3,500 lb
B11EA(AZ064) Electric Brake self-adjusting 11 2 12   6,000 lb
B12EA(AZ571) Electric Brake self-adjusting 12 2 12   7,000 lb
B35EA(AZ060) Electric Brake self-adjusting 10 1 3/4 12   3,500 lb
B44EA(AZ057) Electric Brake self-adjusting 10 2 1/4 12   4,400 lb
B10EAP(AZ037) Electric Brake self-adjusting w/parking 10 2 1/4 12   3,500 lb
B12EAP(AZ036) Electric Brake self-adjusting w/parking 12 2    12   7,000 lb
B07EP(AZ034) Electric Brake with Parking lever 7 1 1/4 12   2,000 lb
B10EP(AZ013) Electric Brake with Parking lever 10 2 1/4 12   3,500 lb
B12EP(AZ011) Electric Brake with Parking lever 12 2 12   7,000 lb
B35EP(AZ061) Electric Brake with Parking lever 10 1 3/4 12   3,500 lb
B44EP(AZ062) Electric Brake with Parking lever 10 2 1/4 12   4,400 lb
B09M(AZ038) Mechannical Brake 9 1 3/4     3,000 lb
B09H(AZ031) Hydraulic Brake 9 1 3/4   Duo-servo 3,000 lb
B10H(AZ007) Hydraulic Brake 10 2 1/4   Uni-servo 3,500 lb
B12H(AZ006) Hydraulic Brake 12 2   Uni-servo 7,000 lb
B10HB(AZ012) Hydraulic Brake free-backing 10 2 1/4   Uni-servo 3,500 lb
B12HB(AZ571) Hydraulic Brake free-backing 12   Uni-servo 7,000 lb
B10HBP(AZ019) Hydraulic Brake free-backing w/parking 10 2 1/4   Uni-servo 3,500 lb
B12HBP(AZ018) Hydraulic Brake free-backing w/parking 12 2   Uni-servo 7,000 lb
B10HP(AZ026) Hydraulic Brake with Parking lever 10 2 1/4   Uni-servo 3,500 lb
B12HP(AZ571) Hydraulic Brake with Parking lever 12 2   Uni-servo 7,000 lb
B1208E(AZ001a) Heavy duty Electric Brake 12 1/4 3 3/8 12   8,000 lb
B1210E(AZ001b) Heavy duty Electric Brake 12 1/4 3 3/8 12   10,000 lb
B1212E(AZ002) Heavy duty Electric Brake 12 1/4 5    12   12,000 lb
B1208EP(AZ035) Heavy duty Electric Brake w/Parking 12 1/4 3 3/8 12   8,000 lb
B1210EP(AZ001c) Heavy duty Electric Brake w/Parking 12 1/4 3 3/8 12   10,000 lb
B1210H(AZ571) Heavy duty Hydraulic Brake 12 1/4 3 3/8   Duo-servo 10,000 lb
…to be continued. More trailer chassis parts-axle,hub,drum,caliper… are available too

  

Packaging & Shipping

 

Generally, in neutral white boxes and brown cartons or as ur requirements.

All our products would be offerd to you only after they passed a series of serous tests. We offer them to you with an easy heart because we know you will be satisfied and safe with our product.

Company Profile

 

 

 

 

Established in 2006, HangZhou Airui Brake System Co., LTD is a Sino-American joint venture. The American AXLE TEKNOLOGY LLC is a famous AXLE company, specializing in the design, development and manufacture of AXLE and its parts, and has rich experience in the development of brakes, drums, AXLE and other trailer parts. One of the largest bridge and spare parts suppliers in Europe.

The company has passed the national CCC certification, ISO9001, TS16949 quality system certification, North American Vehicle parts AMECA certification, Canadian Standards Association CSA certification, ECE certification, technology has reached the world’s advanced level, and obtained a number of technical patents, has been widely recognized by customers. Company factory area of 65,000 square meters, more than 500 employees, including more than 30 professional technical research and development personnel, equipped with the world’s leading laboratory, specializing in trailer, rv bridge, brake, brake drum, spring suspension, connector, casters and related parts production, development and sales in one.

Products are mainly exported to the United States, Canada, Australia and other countries and regions. Core products, electromagnetic brake, axle, electromagnet, and other wheel end trailer parts, annual output of 2 million sets, accounting for more than 90% of the domestic export of similar products market share, North America 40-50% market share.

FAQ

1. who are we?

We are based in ZheJiang , China, start from 2006,sell to North America(67.00%),Oceania(20.00%),Domestic Market(6.00%),South America(00.00%),Eastern Europe(00.00%),Southeast Asia(00.00%),Africa(00.00%),Eastern Asia(00.00%),Western Europe(00.00%),Central America(00.00%). There are total about 301-500 people in our office.

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.what can you buy from us?
Brake Assembly and Parts,Axle Assembly and Parts,Brake Pad,Brake Lining

4. why should you buy from us not from other suppliers?
1> be good at the formulation explore and develop,development team rank top 3 in China
2> huge sales department in America
3>with 8 years manufacture experience
4>300 acers factory
5>ISO/TS16949 and CSA certification
6>products sales over the world

5. what services can we provide?
Accepted Delivery Terms: FOB,CFR,CIF,EXW;
Accepted Payment Currency:USD,JPY;
Accepted Payment Type: T/T,L/C,PayPal;
Language Spoken:English,Chinese,Spanish,Japanese,Portuguese,German,Arabic,French,Russian,Korean,Hindi,Italian

 

 

Stiffness and Torsional Vibration of Spline-Couplings

In this paper, we describe some basic characteristics of spline-coupling and examine its torsional vibration behavior. We also explore the effect of spline misalignment on rotor-spline coupling. These results will assist in the design of improved spline-coupling systems for various applications. The results are presented in Table 1.
splineshaft

Stiffness of spline-coupling

The stiffness of a spline-coupling is a function of the meshing force between the splines in a rotor-spline coupling system and the static vibration displacement. The meshing force depends on the coupling parameters such as the transmitting torque and the spline thickness. It increases nonlinearly with the spline thickness.
A simplified spline-coupling model can be used to evaluate the load distribution of splines under vibration and transient loads. The axle spline sleeve is displaced a z-direction and a resistance moment T is applied to the outer face of the sleeve. This simple model can satisfy a wide range of engineering requirements but may suffer from complex loading conditions. Its asymmetric clearance may affect its engagement behavior and stress distribution patterns.
The results of the simulations show that the maximum vibration acceleration in both Figures 10 and 22 was 3.03 g/s. This results indicate that a misalignment in the circumferential direction increases the instantaneous impact. Asymmetry in the coupling geometry is also found in the meshing. The right-side spline’s teeth mesh tightly while those on the left side are misaligned.
Considering the spline-coupling geometry, a semi-analytical model is used to compute stiffness. This model is a simplified form of a classical spline-coupling model, with submatrices defining the shape and stiffness of the joint. As the design clearance is a known value, the stiffness of a spline-coupling system can be analyzed using the same formula.
The results of the simulations also show that the spline-coupling system can be modeled using MASTA, a high-level commercial CAE tool for transmission analysis. In this case, the spline segments were modeled as a series of spline segments with variable stiffness, which was calculated based on the initial gap between spline teeth. Then, the spline segments were modelled as a series of splines of increasing stiffness, accounting for different manufacturing variations. The resulting analysis of the spline-coupling geometry is compared to those of the finite-element approach.
Despite the high stiffness of a spline-coupling system, the contact status of the contact surfaces often changes. In addition, spline coupling affects the lateral vibration and deformation of the rotor. However, stiffness nonlinearity is not well studied in splined rotors because of the lack of a fully analytical model.
splineshaft

Characteristics of spline-coupling

The study of spline-coupling involves a number of design factors. These include weight, materials, and performance requirements. Weight is particularly important in the aeronautics field. Weight is often an issue for design engineers because materials have varying dimensional stability, weight, and durability. Additionally, space constraints and other configuration restrictions may require the use of spline-couplings in certain applications.
The main parameters to consider for any spline-coupling design are the maximum principal stress, the maldistribution factor, and the maximum tooth-bearing stress. The magnitude of each of these parameters must be smaller than or equal to the external spline diameter, in order to provide stability. The outer diameter of the spline must be at least 4 inches larger than the inner diameter of the spline.
Once the physical design is validated, the spline coupling knowledge base is created. This model is pre-programmed and stores the design parameter signals, including performance and manufacturing constraints. It then compares the parameter values to the design rule signals, and constructs a geometric representation of the spline coupling. A visual model is created from the input signals, and can be manipulated by changing different parameters and specifications.
The stiffness of a spline joint is another important parameter for determining the spline-coupling stiffness. The stiffness distribution of the spline joint affects the rotor’s lateral vibration and deformation. A finite element method is a useful technique for obtaining lateral stiffness of spline joints. This method involves many mesh refinements and requires a high computational cost.
The diameter of the spline-coupling must be large enough to transmit the torque. A spline with a larger diameter may have greater torque-transmitting capacity because it has a smaller circumference. However, the larger diameter of a spline is thinner than the shaft, and the latter may be more suitable if the torque is spread over a greater number of teeth.
Spline-couplings are classified according to their tooth profile along the axial and radial directions. The radial and axial tooth profiles affect the component’s behavior and wear damage. Splines with a crowned tooth profile are prone to angular misalignment. Typically, these spline-couplings are oversized to ensure durability and safety.

Stiffness of spline-coupling in torsional vibration analysis

This article presents a general framework for the study of torsional vibration caused by the stiffness of spline-couplings in aero-engines. It is based on a previous study on spline-couplings. It is characterized by the following 3 factors: bending stiffness, total flexibility, and tangential stiffness. The first criterion is the equivalent diameter of external and internal splines. Both the spline-coupling stiffness and the displacement of splines are evaluated by using the derivative of the total flexibility.
The stiffness of a spline joint can vary based on the distribution of load along the spline. Variables affecting the stiffness of spline joints include the torque level, tooth indexing errors, and misalignment. To explore the effects of these variables, an analytical formula is developed. The method is applicable for various kinds of spline joints, such as splines with multiple components.
Despite the difficulty of calculating spline-coupling stiffness, it is possible to model the contact between the teeth of the shaft and the hub using an analytical approach. This approach helps in determining key magnitudes of coupling operation such as contact peak pressures, reaction moments, and angular momentum. This approach allows for accurate results for spline-couplings and is suitable for both torsional vibration and structural vibration analysis.
The stiffness of spline-coupling is commonly assumed to be rigid in dynamic models. However, various dynamic phenomena associated with spline joints must be captured in high-fidelity drivetrain models. To accomplish this, a general analytical stiffness formulation is proposed based on a semi-analytical spline load distribution model. The resulting stiffness matrix contains radial and tilting stiffness values as well as torsional stiffness. The analysis is further simplified with the blockwise inversion method.
It is essential to consider the torsional vibration of a power transmission system before selecting the coupling. An accurate analysis of torsional vibration is crucial for coupling safety. This article also discusses case studies of spline shaft wear and torsionally-induced failures. The discussion will conclude with the development of a robust and efficient method to simulate these problems in real-life scenarios.
splineshaft

Effect of spline misalignment on rotor-spline coupling

In this study, the effect of spline misalignment in rotor-spline coupling is investigated. The stability boundary and mechanism of rotor instability are analyzed. We find that the meshing force of a misaligned spline coupling increases nonlinearly with spline thickness. The results demonstrate that the misalignment is responsible for the instability of the rotor-spline coupling system.
An intentional spline misalignment is introduced to achieve an interference fit and zero backlash condition. This leads to uneven load distribution among the spline teeth. A further spline misalignment of 50um can result in rotor-spline coupling failure. The maximum tensile root stress shifted to the left under this condition.
Positive spline misalignment increases the gear mesh misalignment. Conversely, negative spline misalignment has no effect. The right-handed spline misalignment is opposite to the helix hand. The high contact area is moved from the center to the left side. In both cases, gear mesh is misaligned due to deflection and tilting of the gear under load.
This variation of the tooth surface is measured as the change in clearance in the transverse plain. The radial and axial clearance values are the same, while the difference between the 2 is less. In addition to the frictional force, the axial clearance of the splines is the same, which increases the gear mesh misalignment. Hence, the same procedure can be used to determine the frictional force of a rotor-spline coupling.
Gear mesh misalignment influences spline-rotor coupling performance. This misalignment changes the distribution of the gear mesh and alters contact and bending stresses. Therefore, it is essential to understand the effects of misalignment in spline couplings. Using a simplified system of helical gear pair, Hong et al. examined the load distribution along the tooth interface of the spline. This misalignment caused the flank contact pattern to change. The misaligned teeth exhibited deflection under load and developed a tilting moment on the gear.
The effect of spline misalignment in rotor-spline couplings is minimized by using a mechanism that reduces backlash. The mechanism comprises cooperably splined male and female members. One member is formed by 2 coaxially aligned splined segments with end surfaces shaped to engage in sliding relationship. The connecting device applies axial loads to these segments, causing them to rotate relative to 1 another.

China supplier Trailer Parts Rims Hub Bearing 750 Lbs-8000 Lbs Trailer Spare Parts Wheel Hub Bearing     with Free Design CustomChina supplier Trailer Parts Rims Hub Bearing 750 Lbs-8000 Lbs Trailer Spare Parts Wheel Hub Bearing     with Free Design Custom