Tag Archives: sales bearing

China Best Sales Hot Forged Heavy Truck Axle Spindle with Ts16949 Standard axle bearing

Product Description

Products Description 

Tie Down Engineering components make it possible for you to build trailer spindle and spindle for heavy duty truck that exactly fit your specifications. By choosing the hub, spindle and axle tube you need and building it yourself, you save money and get a better result. Axle tubes are available in heavy duty capacities, with corresponding spindles and hubs.
 

Item  Spindle Types That We Can Produce 
1 Light Trailer Axle Straight Spindle 
2 Light Trailer Axle Drop Spindle 
3 Axle Spindle For Heavy Duty Trucks 
4 Axle Spindles For Heavy Construction Machinery

Production Process
 Inspection 
Quality Control

The company regards quality as cooperate life,as here to high standard and and high quality.We got ISO9001:2008 and TS16949 system,also sets up the consummate testing system,perfects quality assurance system,implements the rigid quality management,our aim is to realize zero defect,ensure each product to satisfy user.

The main testing equipment includes:3-coordinate measuring machine,Optical Spectrum Analyzer,tensile testing machine,impact testing machine,fluorescent magnetic particle detector,hardness tester,ultrasonic flaw detector..etc.

Packing and Transport 

Packing Details:

  1. Bubble bag and color box per piece used for sales directly, many boxes per carton box, then packed in standard export plywood case/pallet
  2. Carton box+standard export plywood case/pallet
  3. Bubble bag per piece, then packed in standard export plywood case directly
  4. Export plywood case directly

All packing conform to the long-distance transportation which is strong. If clients have special requirement about packing, it’s acceptable.

Company Profile 

Clients Comment
Why Choose Us? 

1. Are you a manufacturer or a trading company?

We are a professional manufacturer with over 22 years’ export experience for designing and producing forging parts and 15 years for aluminum forging parts

2. How can I get some samples?

If you need, we are glad to offer you 1 sample for free, but if the parts are customized, the clients are expected to pay the mould cost.

3. Can you make forging according to our drawing?

Yes, we can make forging parts according to your drawing, 2D or 3D. If the 3D model can be supplied, the development of the tooling can be more efficient. But without 3D, based on 2D drawing we can still make the samples properly approved.

4. Can you make forging based on our samples?

Yes, we can make measurement based on your samples to make drawings for tooling making.
 

5.How many days will samples be finished?
A:Generally, the CZPT and sample will be finished within 1 month.

 

6. What’s your quality control device in house?

We have spectrometer in house to monitor the chemical property, tensile test machine to control the mechanical property as NDT checking method to control the forging detect under the surface of forging parts.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Year Guarantee
Warranty: One Year Guarantee
Type: Axle
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

according to customers′ drawings
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

axle spindle

Can a malfunctioning axle spindle lead to brake-related issues, and if so, how?

Yes, a malfunctioning axle spindle can indeed lead to brake-related issues in a vehicle. Here is a detailed explanation of how a faulty axle spindle can affect the brake system:

The axle spindle plays a crucial role in the operation of the brake system, particularly in vehicles with disc brakes. It is responsible for supporting the wheel hub and providing a mounting point for various brake components, such as the brake rotor, caliper, and brake pads. When the axle spindle malfunctions, it can have several adverse effects on the brake system, including the following:

  • Uneven Brake Pad Wear: A malfunctioning axle spindle can cause uneven distribution of braking force on the brake rotor. This uneven force can lead to uneven wear of the brake pads. Some pads may wear out faster than others, resulting in uneven braking performance and reduced effectiveness.
  • Brake Caliper Misalignment: If the axle spindle becomes bent or damaged, it can cause misalignment of the brake caliper. The caliper may not sit properly over the brake rotor, resulting in uneven braking force or even constant contact between the brake pads and rotor. This can lead to excessive heat, premature wear of brake components, and reduced braking efficiency.
  • Brake Vibration and Noise: A malfunctioning axle spindle can cause vibrations and noise during braking. For example, if the spindle is bent or warped, it can create an uneven surface for the brake rotor. As a result, when the brake pads come into contact with the rotor, it can cause vibrations, squealing, or grinding noises. These symptoms indicate a compromised braking performance and the need for axle spindle inspection and repair.
  • Wheel Bearing Damage: The axle spindle is closely connected to the wheel bearing assembly. If the spindle is damaged or improperly aligned, it can put excessive stress on the wheel bearing, leading to its premature wear or failure. A worn or damaged wheel bearing can introduce additional friction, affect wheel rotation, and potentially cause overheating of the brake components.
  • Brake Fluid Leakage: In certain cases, a malfunctioning axle spindle can result in damage to the brake lines or connections. For example, if the spindle is severely damaged due to an accident or collision, it can cause brake fluid leakage. Brake fluid leakage compromises the hydraulic pressure in the brake system, leading to reduced braking performance or a complete brake failure.

It’s important to note that the specific brake-related issues resulting from a malfunctioning axle spindle can vary depending on the extent and nature of the spindle’s malfunction. Regular inspection and maintenance of the axle spindle, along with the brake system, are essential to identify any potential issues early and prevent further damage.

If you experience any brake-related symptoms or suspect a malfunctioning axle spindle, it is crucial to have the vehicle inspected by a qualified mechanic or technician. They can assess the condition of the axle spindle, perform necessary repairs or replacements, and ensure the proper functioning of the brake system for safe driving.

In summary, a malfunctioning axle spindle can lead to various brake-related issues, including uneven brake pad wear, brake caliper misalignment, brake vibration and noise, wheel bearing damage, and brake fluid leakage. Regular inspection and maintenance of the axle spindle and brake system are essential to prevent these issues and maintain optimal braking performance.

axle spindle

Can axle spindles be upgraded for improved performance, and if so, what are the options?

Axle spindles can be upgraded to improve the performance of a vehicle, particularly in applications where higher strength, durability, or enhanced capabilities are desired. Upgrading axle spindles can provide benefits such as increased load capacity, improved off-road capability, or enhanced towing capabilities. Here are some options for upgrading axle spindles:

  • High-Strength Axle Spindles: One option is to replace the stock axle spindles with high-strength counterparts. High-strength axle spindles are typically made from stronger materials or feature reinforced designs to handle heavier loads or harsher conditions. These upgraded spindles can enhance the overall strength and durability of the axle assembly.
  • Performance Axle Spindles: Performance-oriented axle spindles are designed to improve the handling and responsiveness of the vehicle. These spindles may feature optimized geometry, reduced weight, or enhanced stiffness to provide better cornering abilities, reduced body roll, or improved steering precision. Performance axle spindles are commonly used in applications such as racing or high-performance vehicles.
  • Off-Road Axle Spindles: Off-road enthusiasts may opt for axle spindles specifically designed for rugged terrains. These spindles often have increased ground clearance, improved articulation, or additional reinforcement to withstand the demands of off-road driving. They can enhance the vehicle’s off-road capability, allowing for traversing challenging obstacles and rough terrain more effectively.
  • Towing and Hauling Axle Spindles: Upgraded axle spindles for towing or hauling purposes are engineered to handle heavier loads and provide increased stability. These spindles may have reinforced construction, larger bearings, or specialized features such as integrated trailer brake connections. Upgrading to towing or hauling axle spindles can enhance the vehicle’s towing capacity and improve overall towing performance.
  • Custom Axle Spindles: In some cases, custom axle spindles can be fabricated or modified to meet specific performance requirements. This option is typically utilized in specialized vehicle applications or when specific performance goals cannot be achieved with off-the-shelf upgrades. Custom axle spindles allow for tailored solutions that can address unique needs and performance objectives.

When considering axle spindle upgrades, it is essential to ensure compatibility with other components of the axle assembly, such as bearings, hubs, and brakes. Upgrades may also require modifications to other parts of the vehicle, such as suspension systems or steering components, to optimize performance and maintain overall safety and reliability.

It is recommended to consult with knowledgeable professionals, such as experienced mechanics, axle specialists, or vehicle customization experts, to determine the most suitable upgrade options for your specific vehicle and performance goals. They can provide guidance on selecting the appropriate axle spindle upgrades and ensure proper installation and integration into the vehicle’s overall system.

axle spindle

Can a failing axle spindle affect tire wear and alignment?

Yes, a failing axle spindle can indeed affect tire wear and alignment. Here’s a detailed explanation:

When an axle spindle is failing or damaged, it can have a direct impact on tire wear and alignment, leading to various issues. Here are some ways a failing axle spindle can affect tire wear and alignment:

  • Uneven Tire Wear: A failing axle spindle can cause uneven tire wear patterns. The misalignment or instability resulting from a damaged spindle can lead to irregular contact between the tire and the road surface. This can cause specific areas of the tire to wear down more quickly than others. Common patterns of uneven tire wear include excessive wear on the edges or center of the tire, scalloping, cupping, or feathering. Uneven tire wear not only compromises tire lifespan but also affects vehicle handling and performance.
  • Pulling or Drifting: A failing axle spindle can cause the vehicle to pull or drift to one side. This misalignment can be a result of the damaged spindle not allowing the wheels to be properly aligned. As a consequence, the tires on one side of the vehicle may experience increased friction and wear compared to the other side. This can lead to uneven tire wear and affect the vehicle’s stability and handling.
  • Decreased Traction: A failing axle spindle can result in reduced traction between the tires and the road surface. Misalignment or instability caused by a damaged spindle can affect the tire’s ability to maintain optimal contact with the road. This can lead to decreased grip and traction, particularly during cornering or in wet or slippery conditions. Decreased traction not only affects tire wear but also compromises the vehicle’s overall safety and handling.
  • Alignment Issues: A failing axle spindle can contribute to alignment problems. The damaged spindle may prevent the proper adjustment and alignment of the wheels. This can result in misaligned toe, camber, or caster angles, which directly impact tire wear. Improper alignment puts uneven stress on the tires, leading to accelerated wear and reduced tire lifespan.
  • Compromised Steering Stability: A failing axle spindle can affect steering stability. Instability or misalignment caused by a damaged spindle can result in imprecise steering response and reduced control over the vehicle. This can lead to uneven tire loading and wear, as well as affect the overall handling and safety of the vehicle.

Addressing a failing axle spindle is crucial to prevent further damage to the tires and maintain proper alignment. If you notice uneven tire wear, pulling or drifting, decreased traction, or other signs of tire-related issues, it’s recommended to have the axle spindle inspected by a qualified mechanic or technician. They can accurately diagnose the problem and perform the necessary repairs or replacement to restore proper alignment and prevent further tire wear and damage.

In summary, a failing axle spindle can have a direct impact on tire wear and alignment. It can cause uneven tire wear, pulling or drifting, decreased traction, alignment issues, and compromised steering stability. Timely inspection and repair of the failing axle spindle are essential to ensure optimal tire performance, prolong tire lifespan, and maintain safe vehicle operation.

China Best Sales Hot Forged Heavy Truck Axle Spindle with Ts16949 Standard   axle bearingChina Best Sales Hot Forged Heavy Truck Axle Spindle with Ts16949 Standard   axle bearing
editor by CX 2024-04-17

China Best Sales Wheel Hub Bearing Knuckle Assembly Spindle Knuckle Hub Bearing Axle Hub and Knuckle Assembly for Jeep CZPT with Best Sales

Product Description

OE no.: R: 68088498AD 68088498AA 68088498AB 68088498AC
OE no.: L: 68088499AD 68088499AA 68088499AB 68088499AC

DODGE CALIBER 2AD

 

Quality OEM Standard size
MOQ 50 PCS
Packing Netual Packing
Delivery Within 10-60 days after order confirmed
Payment T/T, Paypal,etc.


FAQ

Q1. What is your terms of packing?
A: Generally, we pack our goods in neutral white boxes and brown cartons. If you have legally registered patent, we can pack the goods in your branded boxes after getting your authorization letters.

Q2. What is your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages 
before you pay the balance.

Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF, DDU.

Q4. How about your delivery time?
A: Generally, it will take 30 to 60 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.

Q5. Can you produce according to the samples?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.

Q6. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

Q7. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery.

Q8: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit 

The Functions of Splined Shaft Bearings

Splined shafts are the most common types of bearings for machine tools. They are made of a wide variety of materials, including metals and non-metals such as Delrin and nylon. They are often fabricated to reduce deflection. The tooth profile will become deformed with time, as the shaft is used over a long period of time. Splined shafts are available in a huge range of materials and lengths.

Functions

Splined shafts are used in a variety of applications and industries. They are an effective anti-rotational device, as well as a reliable means of transmitting torque. Other types of shafts are available, including key shafts, but splines are the most convenient for transmitting torque. The following article discusses the functions of splines and why they are a superior choice. Listed below are a few examples of applications and industries in which splines are used.
Splined shafts can be of several styles, depending on the application and mechanical system in question. The differences between splined shaft styles include the design of teeth, overall strength, transfer of rotational concentricity, sliding ability, and misalignment tolerance. Listed below are a few examples of splines, as well as some of their benefits. The difference between these styles is not mutually exclusive; instead, each style has a distinct set of pros and cons.
A splined shaft is a cylindrical shaft with teeth or ridges that correspond to a specific angular position. This allows a shaft to transfer torque while maintaining angular correspondence between tracks. A splined shaft is defined as a cylindrical member with several grooves cut into its circumference. These grooves are equally spaced around the shaft and form a series of projecting keys. These features give the shaft a rounded appearance and allow it to fit perfectly into a grooved cylindrical member.
While the most common applications of splines are for shortening or extending shafts, they can also be used to secure mechanical assemblies. An “involute spline” spline has a groove that is wider than its counterparts. The result is that a splined shaft will resist separation during operation. They are an ideal choice for applications where deflection is an issue.
A spline shaft’s radial torsion load distribution is equally distributed, unless a bevel gear is used. The radial torsion load is evenly distributed and will not exert significant load concentration. If the spline couplings are not aligned correctly, the spline connection can fail quickly, causing significant fretting fatigue and wear. A couple of papers discuss this issue in more detail.
splineshaft

Types

There are many different types of splined shafts. Each type features an evenly spaced helix of grooves on its outer surface. These grooves are either parallel or involute. Their shape allows them to be paired with gears and interchange rotary and linear motion. Splines are often cold-rolled or cut. The latter has increased strength compared to cut spines. These types of shafts are commonly used in applications requiring high strength, accuracy, and smoothness.
Another difference between internal and external splined shafts lies in the manufacturing process. The former is made of wood, while the latter is made of steel or a metal alloy. The process of manufacturing splined shafts involves cutting furrows into the surface of the material. Both processes are expensive and require expert skill. The main advantage of splined shafts is their adaptability to a wide range of applications.
In general, splined shafts are used in machinery where the rotation is transferred to an internal splined member. This member can be a gear or some other rotary device. These types of shafts are often packaged together as a hub assembly. Cleaning and lubricating are essential to the life of these components. If you’re using them on a daily basis, you’ll want to make sure to regularly inspect them.
Crowned splines are usually involute. The teeth of these splines form a spiral pattern. They are used for smaller diameter shafts because they add strength. Involute splines are also used on instrument drives and valve shafts. Serration standards are found in the SAE. Both kinds of splines can also contain a ball bearing for high torque. The difference between the 2 types of splines is the number of teeth on the shaft.
Internal splines have many advantages over external ones. For example, an internal spline shaft can be made using a grinding wheel instead of a CNC machine. It also uses a more accurate and economical process. Furthermore, it allows for a shorter manufacturing cycle, which is essential when splining high-speed machines. In addition, it stabilizes the relative phase between the spline and thread.
splineshaft

Manufacturing methods

There are several methods used to fabricate a splined shaft. Key and splined shafts are constructed from 2 separate parts that are shaped in a synchronized manner to transfer torque uniformly. Hot rolling is 1 method, while cold rolling utilizes low temperatures to form metal. Both methods enhance mechanical properties, surface finishes, and precision. The advantage of cold rolling is its cost-effectiveness.
Cold forming is 1 method, as well as machining and assembling. Cold forming is a unique process that allows the spline to be shaped to the desired shape. The resulting shape provides maximum contact area and torsional strength. Standard splines are available in standard sizes, but custom lengths can also be ordered. CZPT offers various auxiliary equipment, such as mating sleeves and flanged bushings.
Cold forging is another method. This method produces long splined shafts that are used in automobile propellers. After the spline portion is cut out, it is worked on in a hobbing machine. Work hardening enhances the root strength of the splined portion. It can be used for bearings, gears, and other mechanical components. Listed below are the manufacturing methods for splined shafts.
Parallel splines are the simplest of the splined shaft manufacturing methods. Parallel splines are usually welded to shafts, while involute splines are made of metal or non-metals. Splines are available in a wide variety of lengths and materials. The process is usually accompanied by a process called milling. The workpiece rotates to produce the serrated surface.
Splines are internal or external grooves in a splined shaft. They work in combination with keyways to transfer torque. Male and female splines are used in gears. Female and male splines correspond to 1 another to ensure proper angular correspondence. Involute splines have more surface area and thus are stronger than external splines. Moreover, they help the shaft fit into a grooved cylindrical member without misalignment.
A variety of other methods of manufacturing a splined shaft can be used to produce a splined shaft. Spline shafts can be produced using broaching and shaping, 2 precision machining methods. Broaching uses a metal tool with successively larger teeth to remove metal and create ridges and holes in the surface of a material. However, this process is expensive and requires special expertise.
splineshaft

Applications

The splined shaft is a mechanical component with a helix-like shape formed by the equal spacing of grooves in a circular ring. The splines can either have parallel or involute sides. The splines minimize stress concentration in stationary joints and can be used in both rotary and linear motion. In some cases, splines are rolled rather than cut. The latter is more durable than cut splines and is often used in applications requiring high strength, accuracy, and smooth finish.
Splined shafts are commonly made of carbon steel. This alloy steel has a low carbon content, making it easy to work with. Carbon steel is a great choice for splines because it is malleable. Generally, high-quality carbon steel provides a consistent motion. Steel alloys are also available that contain nickel, chromium, copper, and other metals. If you’re unsure of the right material for your application, you can consult a spline chart.
Splines are a versatile mechanical component. They are easy to cut and fit. Splines can be internal or external, with teeth positioned at equal intervals on both sides of the shaft. This allows the shaft to engage with the hub around the entire circumference of the hub. It also increases load capacity by creating a constant multiple-tooth point of contact with the hub. For this reason, they’re used extensively in rotary and linear motion.
Splined shafts are used in a wide variety of industries. CZPT Inc. offers custom and standard splined shafts for a variety of applications. When choosing a splined shaft for a specific application, consider the surrounding mated components, torque requirements, and size requirements. These 3 factors will make it the ideal choice for your rotary equipment. And you’ll be pleased with the end result!
There are many types of splines and their applications are endless. They transfer torque and angular misalignment between parts, and they also enable the axial rotation of assembled components. Therefore, splines are an essential component of machinery and are used in a wide range of applications. This type of shaft can be found in various types of machines, from household appliances to industrial machinery. So, the next time you’re looking for a splined shaft, make sure you look for a splined one.

China Best Sales Wheel Hub Bearing Knuckle Assembly Spindle Knuckle Hub Bearing Axle Hub and Knuckle Assembly for Jeep CZPT     with Best SalesChina Best Sales Wheel Hub Bearing Knuckle Assembly Spindle Knuckle Hub Bearing Axle Hub and Knuckle Assembly for Jeep CZPT     with Best Sales

China Good quality Trailer Parts Hub Bearing 750 Lbs-8000 Lbs Trailer Spare Parts Wheel Hub Bearing with Best Sales

Product Description

 

Product Description

item

Trailer Hub Bearing

Use

Trailer HUB Parts

Parts

Trailer Bearing

OE NO.

4inch to 12.25*5 inch Hub /Drum bearing

Max Payload

8000 lbs

Size

12.25*5″

Place of Origin

China

 

ZheJiang

Brand Name

Airui

Type

Light trailer bearing

Application

trailer axle

Detailed Specification:

7″ 9″ 10″ 11″ 12″ 12 1/4″ electric/hydraulic/mechanical brake assembly 
for almost all kinds of light and medium-duty trailer usage.

Iron frame with air bubble film and plastic film :

 

 

Our Advantage

 

1>Our joint venture partners are American Famous axle company AXLETEK,we have make a cooperation for 6 years.So we can supply stable and high quality brakes.

2>We have Researching and Development Department in Detroit,so we are also capable of developing products according drawing or samples to meet the special requirement of our customes.

3>We can supply 7 inch,10 inch,12 inch and 12.25 inch brakes for the moment.

4>All the parts for the brakes are produced by ourself,so we can supply our customer high quality products with resonable price.

5>We can also supply axle assemly.
 

 

Specification

 

 

 

  • more product models

 

Model No. Brake type Wideness Thickness Voltage Cylinder Max. Load
B07E(AZ008) Electric Brake 7 1 1/4 12   2,000 lb
B10E(AZ004) Electric Brake 10 2 1/4 12   3,500 lb
B11E(AZ017) Electric Brake 11 2 12   6,000 lb
B12E(AZ003) Electric Brake 12 2 12   7,000 lb
B35E(AZ056) Electric Brake 10 1 3/4 12   3,500 lb
B44E(AZ063) Electric Brake 10 2 1/4 12   4,400 lb
B10EA(AZ571) Electric Brake self-adjusting 10 2 1/4 12   3,500 lb
B11EA(AZ064) Electric Brake self-adjusting 11 2 12   6,000 lb
B12EA(AZ571) Electric Brake self-adjusting 12 2 12   7,000 lb
B35EA(AZ060) Electric Brake self-adjusting 10 1 3/4 12   3,500 lb
B44EA(AZ057) Electric Brake self-adjusting 10 2 1/4 12   4,400 lb
B10EAP(AZ037) Electric Brake self-adjusting w/parking 10 2 1/4 12   3,500 lb
B12EAP(AZ036) Electric Brake self-adjusting w/parking 12 2    12   7,000 lb
B07EP(AZ034) Electric Brake with Parking lever 7 1 1/4 12   2,000 lb
B10EP(AZ013) Electric Brake with Parking lever 10 2 1/4 12   3,500 lb
B12EP(AZ011) Electric Brake with Parking lever 12 2 12   7,000 lb
B35EP(AZ061) Electric Brake with Parking lever 10 1 3/4 12   3,500 lb
B44EP(AZ062) Electric Brake with Parking lever 10 2 1/4 12   4,400 lb
B09M(AZ038) Mechannical Brake 9 1 3/4     3,000 lb
B09H(AZ031) Hydraulic Brake 9 1 3/4   Duo-servo 3,000 lb
B10H(AZ007) Hydraulic Brake 10 2 1/4   Uni-servo 3,500 lb
B12H(AZ006) Hydraulic Brake 12 2   Uni-servo 7,000 lb
B10HB(AZ012) Hydraulic Brake free-backing 10 2 1/4   Uni-servo 3,500 lb
B12HB(AZ571) Hydraulic Brake free-backing 12   Uni-servo 7,000 lb
B10HBP(AZ019) Hydraulic Brake free-backing w/parking 10 2 1/4   Uni-servo 3,500 lb
B12HBP(AZ018) Hydraulic Brake free-backing w/parking 12 2   Uni-servo 7,000 lb
B10HP(AZ026) Hydraulic Brake with Parking lever 10 2 1/4   Uni-servo 3,500 lb
B12HP(AZ571) Hydraulic Brake with Parking lever 12 2   Uni-servo 7,000 lb
B1208E(AZ001a) Heavy duty Electric Brake 12 1/4 3 3/8 12   8,000 lb
B1210E(AZ001b) Heavy duty Electric Brake 12 1/4 3 3/8 12   10,000 lb
B1212E(AZ002) Heavy duty Electric Brake 12 1/4 5    12   12,000 lb
B1208EP(AZ035) Heavy duty Electric Brake w/Parking 12 1/4 3 3/8 12   8,000 lb
B1210EP(AZ001c) Heavy duty Electric Brake w/Parking 12 1/4 3 3/8 12   10,000 lb
B1210H(AZ571) Heavy duty Hydraulic Brake 12 1/4 3 3/8   Duo-servo 10,000 lb
…to be continued. More trailer chassis parts-axle,hub,drum,caliper… are available too

  

Packaging & Shipping

 

Generally, in neutral white boxes and brown cartons or as ur requirements.

All our products would be offerd to you only after they passed a series of serous tests. We offer them to you with an easy heart because we know you will be satisfied and safe with our product.

Company Profile

 

 

 

 

Established in 2006, HangZhou Airui Brake System Co., LTD is a Sino-American joint venture. The American AXLE TEKNOLOGY LLC is a famous AXLE company, specializing in the design, development and manufacture of AXLE and its parts, and has rich experience in the development of brakes, drums, AXLE and other trailer parts. One of the largest bridge and spare parts suppliers in Europe.

The company has passed the national CCC certification, ISO9001, TS16949 quality system certification, North American Vehicle parts AMECA certification, Canadian Standards Association CSA certification, ECE certification, technology has reached the world’s advanced level, and obtained a number of technical patents, has been widely recognized by customers. Company factory area of 65,000 square meters, more than 500 employees, including more than 30 professional technical research and development personnel, equipped with the world’s leading laboratory, specializing in trailer, rv bridge, brake, brake drum, spring suspension, connector, casters and related parts production, development and sales in one.

Products are mainly exported to the United States, Canada, Australia and other countries and regions. Core products, electromagnetic brake, axle, electromagnet, and other wheel end trailer parts, annual output of 2 million sets, accounting for more than 90% of the domestic export of similar products market share, North America 40-50% market share.

FAQ

1. who are we?

We are based in ZheJiang , China, start from 2006,sell to North America(67.00%),Oceania(20.00%),Domestic Market(6.00%),South America(00.00%),Eastern Europe(00.00%),Southeast Asia(00.00%),Africa(00.00%),Eastern Asia(00.00%),Western Europe(00.00%),Central America(00.00%). There are total about 301-500 people in our office.

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.what can you buy from us?
Brake Assembly and Parts,Axle Assembly and Parts,Brake Pad,Brake Lining

4. why should you buy from us not from other suppliers?
1> be good at the formulation explore and develop,development team rank top 3 in China
2> huge sales department in America
3>with 8 years manufacture experience
4>300 acers factory
5>ISO/TS16949 and CSA certification
6>products sales over the world

5. what services can we provide?
Accepted Delivery Terms: FOB,CFR,CIF,EXW;
Accepted Payment Currency:USD,JPY;
Accepted Payment Type: T/T,L/C,PayPal;
Language Spoken:English,Chinese,Spanish,Japanese,Portuguese,German,Arabic,French,Russian,Korean,Hindi,Italian

 

 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China Good quality Trailer Parts Hub Bearing 750 Lbs-8000 Lbs Trailer Spare Parts Wheel Hub Bearing     with Best SalesChina Good quality Trailer Parts Hub Bearing 750 Lbs-8000 Lbs Trailer Spare Parts Wheel Hub Bearing     with Best Sales