China Good quality CNC Lathe CNC Milling Machining Parts Forging Shaft with Good quality

Product Description

Your customized parts,Customized solutions
Company profiles
We established in 2571 year, named Xihu (West Lake) Dis. Tongyong Machinery Company. In 2019 renamed HangZhou Hejess Machinery Co.,Ltd and established new plants. 
We are mainly engaged in the designing and manufacturing of steel machinery components and non-standard machinery parts, including shafts, flange, gears, rings, sheaves, couplings, bearing supports,  and forgings etc.

Production Parameter
 

  • Material: Alloy steel,Carbon steel,Carburizing steel,Quenched and tempered steel
  • Heat treatment: Normalizing,Annealing,Quenching&Tempering,Surface Quenching, Induction hardening
  • Machining: CNC Turning,CNC Milling,CNC Boring,CNC Grinding,CNC Drilling
  • Gear Machining: Gear Hobbing,Gear Milling,CNC Gear Milling,Gear Cutting,Spiral gear cutting,
  • Gear Cutting
  • Inspection: Chemical Composition Test,Ultrasonic Test,Penetration Test,Radiographic Test,

Magnetic Test,Tensile Strength Test,Impact Test,Hardness Test,Dimension Test.

We can provide forging from 1kg to 5Ton. And make precison machining. Also have welding and assembly capabilities.

Quality Control
Product quality is what we are paying great attention to all the time. Each product is produced under careful control at every process and inspected by experienced engineers strictly according to the related standards and customer requirements, ensuring the super performance of our goods when arrive at customer.
Ø Production Flow Chart
1, Order Analyzing
    Know requirements of raw material, chemical composition, Mechanical properties.
    Analyzing how to forging and how to make heat treatment.
2, Raw material.
    Use which raw material, plate, round bar, steel ingot.
   According your parts, choose the best cost performance one.
   If you required special material, will customized from steel factory.
   Customized raw material according your requirments.
3, Forging
    Make forging process chart and forging form
    Make forging drawing
    Make 3D drawing
    Make forging mould
4, Pre –  forging
5, Finish – forging
Natural gas heating furnaces are monitored and controlled by computer programs to ensure precise heating within set time and temperature range as required.
A broad range of forging equipment,including friction press, hudraulic hammer, forging hammers.With the aids od intelligent software,proper deformation,forging ration,ingot size and weight,forging tooling and equipment will be determined to ensure the wrought structure through hout and sound quality.
6, Pre- machining
7, Make UT (ultrasonic) inspection.
8, Make heat treatment
9, Inspect hardness and mechanical properties.
10, Make precision machining / finished machining.
      Use CNC machining center, CNC milling, CNC boring, CNC grinding
11, Inspect dimenssions.
12, Protecting and packing.

Main market :  America, Australia, Malaysia,Israel,Britain, Russia,Canada, ect.

Services : The services we can provide are : FOB, CIF, DAP. Only give me the drawings and requirements, you will receive the goods at your home.
 Wehas accumulated rich knowledge and experience in the producing and exporting. Familar every process, when metting problems, be able to find a solution timely.

Excellent service attitude, fast reaction speed, on-time delivery, consciousness of responsibility and flexibility is what we are practicing from the very beginning, combining with high credit, competitive price, close interaction with customer and innovative way of working, make us win more and more business and excellent customer satisfaction.
To choose us, HangZhou CZPT Machinery, as your business partner, never will you find you are wrong!

PRODUCTION DETAILS

Technology : Free forging / Open forging / Die forging / closed forging / Impression die forging / Flashless forging / multi-ram forging / multidirectional die forging / precision forging / croe forging / combination forging / extrusion forging / roll forging / reducer rolling / ring rolling /  open die forging / flat die forging / loose tooling forging
Material Standard : ISO / DIN / W-Nr / BS / EN / ASTM / ASME / AISI / UNS / SAE / JIS / SS/ NF / GOST / OCT / GB
Material Type: Austenilic Ni-Cr Stainless Steel / Austenitic Alloy Steel / Austenitic Stainless Stee / Axle Shaft Steel /  Bar Steel / Bearing Steel / Bolting Steel / Carbon And Low-Alloy Steel Vessels / Carbon Steel / Carbon Tool Steel /  Carbon-Containing Alloy Steel / Case-Hardened Steel / Cast Steel / Cast-Steel Pipe / Centrifugal Steel / Centrifuge(D) Steel / Channel Steel  / Chilled Hardened Steel / Chrome Hardened Steel / Chrome-Carbon Steel  / Chrome-Molybdenum Steel  / Chrome-Nickel Steel / Closed Die Steel / Coating Steel Pipe / Die Steel / Drawing Steel / Extra-High-Tensile Steel / Fabricated Steel /  Ferritic Stainless Steel  / Ferritic Steel / Figured Steel / Fine Steel / Flange Steel / Groove Steel / Hard Alloy Steel /  High Alloy Steel / High Boron Steel / High Carbon Steel / High Chrome Alloy Steel / High Manganese Steel / High Nickel-Chrome Steel

 

Show the production process as below photos:

Our Products Catalogue
 

Products Catalogue
Item Application Technical Material Picture Market
1 Lift Rod Forging – heat treatment –  CNC machining – CNC Grinding Alloy steel Australia
2 Eccentric shaft Forging – heat treatment –  CNC machining – CNC Grinding Alloy steel Britain
3 Pin shaft Forging – heat treatment –  CNC machining Alloy steel USA
4 Spindle Forging – heat treatment –  CNC machining – CNC Grinding Alloy steel Germany
5 Step shaft Forging – heat treatment –  CNC machining Alloy steel Peru
6 Long shaft Forging – heat treatment –  CNC machining – CNC Grinding Alloy steel Ukraine
7 Big head shaft Forging – heat treatment –  CNC machining Alloy steel Israel
8 Hollow shaft Forging – heat treatment –  CNC machining Custom Alloy steel Singapore
9 Zinc plating flange Forging – heat treatment –  CNC machining – Zinc plating Alloy steel Australia
10 Spline shaft Forging – heat treatment –  CNC machining Alloy steel Singapore
11 Gear Shaft Forging – heat treatment –  CNC machining – Surface Quenching Alloy steel Russia
12 Gear Forging – heat treatment –  CNC machining Alloy steel Russia
13 Ring Forging – heat treatment –  CNC machining Alloy steel USA
14 Ring Forging – heat treatment –  CNC machining Alloy steel Malaysia
15 Half ring Forging – heat treatment –  CNC machining Alloy steel Malaysia
16 Cylinder Forging – heat treatment –  CNC machining Alloy steel Iran
17 Flange Forging – heat treatment –  CNC machining Alloy steel USA
18 Groove ring Forging – heat treatment –  CNC machining Alloy steel USA
19 Flange shaft Forging – heat treatment –  CNC machining Alloy steel USA
20 Flange Forging – heat treatment –  CNC machining Alloy steel USA
21 Pin shaft Forging – heat treatment –  CNC machining Alloy steel USA
22 Shaft Forging – heat treatment –  CNC machining Alloy steel USA
23 Square flange Forging – heat treatment –  CNC machining Alloy steel USA    Britain 
24 Nut Forging – heat treatment –  CNC machining Alloy steel USA
25 Flange Forging – heat treatment –  CNC machining Alloy steel USA
26 Flange Forging – heat treatment –  CNC machining Alloy steel USA
27 Forks Wire cutting – heat treatment – CNC machining Alloy steel USA
28 Closed die forging part Forging – CNC machining Alloy steel USA
29 Closed die forging part Forging – CNC machining Alloy steel USA
30 Closed die forging part Forging – CNC machining Alloy steel USA

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China Good quality CNC Lathe CNC Milling Machining Parts Forging Shaft     with Good qualityChina Good quality CNC Lathe CNC Milling Machining Parts Forging Shaft     with Good quality

Recent Posts